【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點(diǎn)A在x軸上,點(diǎn)B的坐標(biāo)是(0,3),若點(diǎn)C恰好在反比例函數(shù)第一象限內(nèi)的圖象上,那么點(diǎn)C的坐標(biāo)為______________.
【答案】
【解析】
作CD⊥x軸于D,由于∠BAC=90°,容易求證△ABO≌△CAD,利用全等三角形的性質(zhì)即可求出點(diǎn)C的坐標(biāo).
作CD⊥x軸于D,
∵∠BAC=90°
∴∠BAO+∠CAD=90°,
又∠CAD+∠ACD=90°,
∴∠BAO=∠ACD
在△ABO與△CAD中
∴△ABO≌△CAD(AAS)
∴OB=AD
設(shè)OA=a,
∵B(0,3)
∴OB=3,
∴AD=3,
∴OD=a+3,CD=OA=a,
∴C(a+3,a)
又∵點(diǎn)C在反比例函數(shù)上
∴10=a(a+3)
解得:a=2或a=-5(舍去),
∴a+3=5,
∴C(5,2)
故答案為:(5,2)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)為圖形
上任意一點(diǎn),點(diǎn)
為圖形
上任意一點(diǎn),若點(diǎn)
與點(diǎn)
之間的距離
始終滿足
,則稱圖形
與圖形
相離.
(1)已知點(diǎn)、
、
、
.
①與直線相離的點(diǎn)是 ;
②若直線與
相離,求
的取值范圍;
(2)設(shè)直線、直線
及直線
圍成的圖形為
,⊙
的半徑為
,圓心
的坐標(biāo)為
,直接寫出⊙
與圖形
相離的
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為
,過點(diǎn)
作
軸的垂線交直線
于點(diǎn)
,以原點(diǎn)
為圓心,
的長為半徑畫弧交
軸正半軸于點(diǎn)
;再過點(diǎn)
作
軸的垂線交直線
于點(diǎn)
,以原點(diǎn)
為圓心,
的長為半徑畫弧交
軸正半軸于點(diǎn)
,...,按此做法進(jìn)行下去,則
的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,
是
的平分線,
是射線
上一點(diǎn),
.動點(diǎn)
從點(diǎn)
出發(fā),以
的速度沿
水平向左作勻速運(yùn)動,與此同時,動點(diǎn)
從點(diǎn)
出發(fā),也以
的速度沿
豎直向上作勻速運(yùn)動.連接
,交
于點(diǎn)
.經(jīng)過
、
、
三點(diǎn)作圓,交
于點(diǎn)
,連接
、
.設(shè)運(yùn)動時間為
,其中
.
(1)求的值;
(2)是否存在實(shí)數(shù),使得線段
的長度最大?若存在,求出
的值;若不存在,說明理由.
(3)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地之間有一條筆直的公路,小明從甲地出發(fā)步行前往乙地,同時小亮從乙地出發(fā)騎自行車前往甲地,小亮到達(dá)甲地沒有停留,按原路原速返回,追上小明后兩人一起步行到乙地.如圖,線段OA表示小明與甲地的距離y1(米)與行走的時間x(分鐘)之間的函數(shù)關(guān)系:折線BCDA表示小亮與甲地的距離y2(米)與行走的時間x(分鐘)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:
(1)小明步行的速度是 米/分鐘,小亮騎自行車的速度是 米/分鐘;
(2)線段OA與BC相交于點(diǎn)E,求點(diǎn)E坐標(biāo);
(3)請直接寫出小亮從乙地出發(fā)到追上小明的過程中,與小明相距100米時x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,滑翔運(yùn)動員在空中測量某寺院標(biāo)志性高塔“云端塔”的高度,空中的點(diǎn)P距水平地面BE的距離為200米,從點(diǎn)P觀測塔頂A的俯角為33°,以相同高度繼續(xù)向前飛行120米到達(dá)點(diǎn)C,在C處觀測點(diǎn)A的俯角是60°,求這座塔AB的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ABC=60°,∠BAD的平分線交CD于點(diǎn)E,交BC的延長線于點(diǎn)F,連接DF.
(1)求證:△ABF是等邊三角形;
(2)若∠CDF=45°,CF=2,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓O的直徑AB垂直于弦CD于點(diǎn)E,連接CO并延長交AD于點(diǎn)F,且CF⊥AD.
(1)證明:點(diǎn)E是OB的中點(diǎn);
(2)若AB=8,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:矩形的邊
,
,點(diǎn)
從點(diǎn)
出發(fā)沿線段
向點(diǎn)
勻速運(yùn)動,點(diǎn)
同時從點(diǎn)
出發(fā)沿線段
向點(diǎn)
勻速運(yùn)動,速度均為
,當(dāng)一個點(diǎn)到達(dá)終點(diǎn)時另一個點(diǎn)也停止運(yùn)動.連接
,以
為對角線作正方形
,連接
,則
的長度為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com