【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)交
軸于點(diǎn)
、
,交
軸于點(diǎn)
,在
軸上有一點(diǎn)
,連接
.
(1)求二次函數(shù)的表達(dá)式;
(2)若點(diǎn)為拋物線在
軸負(fù)半軸上方的一個(gè)動點(diǎn),求
面積的最大值;
(3)拋物線對稱軸上是否存在點(diǎn),使
為等腰三角形,若存在,請直接寫出所有
點(diǎn)的坐標(biāo),若不存在請說明理由.
【答案】(1)二次函數(shù)的解析式為;(2)當(dāng)
時(shí),
的面積取得最大值
;(3)
點(diǎn)的坐標(biāo)為
,
,
.
【解析】(1)把已知點(diǎn)坐標(biāo)代入函數(shù)解析式,得出方程組求解即可;
(2)根據(jù)函數(shù)解析式設(shè)出點(diǎn)D坐標(biāo),過點(diǎn)D作DG⊥x軸,交AE于點(diǎn)F,表示△ADE的面積,運(yùn)用二次函數(shù)分析最值即可;
(3)設(shè)出點(diǎn)P坐標(biāo),分PA=PE,PA=AE,PE=AE三種情況討論分析即可.
(1)∵二次函數(shù)y=ax2+bx+c經(jīng)過點(diǎn)A(﹣4,0)、B(2,0),C(0,6),
∴,
解得:,
所以二次函數(shù)的解析式為:y=;
(2)由A(﹣4,0),E(0,﹣2),可求AE所在直線解析式為y=,
過點(diǎn)D作DN⊥x軸,交AE于點(diǎn)F,交x軸于點(diǎn)G,過點(diǎn)E作EH⊥DF,垂足為H,如圖,
設(shè)D(m,),則點(diǎn)F(m,
),
∴DF=﹣(
)=
,
∴S△ADE=S△ADF+S△EDF=×DF×AG+
DF×EH
=×DF×AG+
×DF×EH
=×4×DF
=2×()
=,
∴當(dāng)m=時(shí),△ADE的面積取得最大值為
.
(3)y=的對稱軸為x=﹣1,設(shè)P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=
,PE=
,AE=
,分三種情況討論:
當(dāng)PA=PE時(shí),=
,解得:n=1,此時(shí)P(﹣1,1);
當(dāng)PA=AE時(shí),=
,解得:n=
,此時(shí)點(diǎn)P坐標(biāo)為(﹣1,
);
當(dāng)PE=AE時(shí),=
,解得:n=﹣2
,此時(shí)點(diǎn)P坐標(biāo)為:(﹣1,﹣2
).
綜上所述:P點(diǎn)的坐標(biāo)為:(﹣1,1),(﹣1,),(﹣1,﹣2
).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是直線
上一點(diǎn),
,
是
的平分線.
(1)當(dāng)點(diǎn),
在直線
的同側(cè),且
在
的內(nèi)部時(shí)(如圖1所示 ), 設(shè)
,求
的大小;
(2)當(dāng)點(diǎn)與點(diǎn)
在直線
的兩旁(如圖2所示),(1)中的結(jié)論是否仍然成立?請給出你的結(jié)論,并說明理由;
(3)將圖2 中的射線繞點(diǎn)
順時(shí)針旋轉(zhuǎn)
,得到射線
,設(shè)
,若
,則
的度數(shù)是 (用含
的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車行駛時(shí)的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程
(千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出汽車行駛400千米時(shí),油箱內(nèi)的剩余油量,并計(jì)算加滿油時(shí)油箱的油量;
(2)求關(guān)于
的函數(shù)關(guān)系式,并計(jì)算該汽車在剩余油量5升時(shí),已行駛的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列代數(shù)式或方程解應(yīng)用題:
已知小明的年齡是
歲,小紅的年齡比小明的年齡的
倍小
歲,小華的年齡比小紅的年齡大
歲,求這三名同學(xué)的年齡的和.
小亮與小明從學(xué)校同時(shí)出發(fā)去看在首都體育館舉行的一場足球賽, 小亮每分鐘走
,他走到足球場等了
分鐘比賽才開始:小明每分鐘走
,他走到足球場,比賽已經(jīng)開始了
分鐘.問學(xué)校與足球場之間的距離有多遠(yuǎn)?
請根據(jù)圖中提供的信息,回答下列問題:
①一個(gè)水瓶與一個(gè)水杯分別是多少元?
②甲、乙兩家商場都銷售該水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個(gè)水瓶贈送兩個(gè)水杯,單獨(dú)購買的水杯仍按原價(jià)銷售.若某單位想在一家商場買個(gè)水瓶和
個(gè)水杯,請問選擇哪家商場更合算?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文美書店決定用不多于20000元購進(jìn)甲乙兩種圖書共1200本進(jìn)行銷售.甲、乙兩種圖書的進(jìn)價(jià)分別為每本20元、14元,甲種圖書每本的售價(jià)是乙種圖書每本售價(jià)的1.4倍,若用1680元在文美書店可購買甲種圖書的本數(shù)比用1400元購買乙種圖書的本數(shù)少10本.
(1)甲乙兩種圖書的售價(jià)分別為每本多少元?
(2)書店為了讓利讀者,決定甲種圖書售價(jià)每本降低3元,乙種圖書售價(jià)每本降低2元,問書店應(yīng)如何進(jìn)貨才能獲得最大利潤?(購進(jìn)的兩種圖書全部銷售完.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)由若干小正方形堆成的幾何體,它從正面看和從左面看的圖形如圖1所示.
這個(gè)幾何體可以是圖2中甲,乙,丙中的______;
這個(gè)幾何體最多由______個(gè)小正方體堆成,最少由______個(gè)小正方體堆成;
請?jiān)趫D3中用陰影部分畫出符合最少情況時(shí)的一個(gè)從上面往下看得到的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請?jiān)谙旅胬ㄌ柪镅a(bǔ)充完整證明過程:
已知:如圖,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,且∠CEF=∠CFE.求證:CD⊥AB.
證明:∵AF平分∠CAB (已知)
∴ ∠1=∠2( )
∵∠CEF=∠CFE , 又∠3=∠CEF (對頂角相等)
∴∠CFE=∠3(等量代換)
∵在△ACF中,∠ACF=90°(已知)
∴( )+∠CFE=90°( )
∵∠1=∠2, ∠CFE=∠3(已證) ∴( )+( )=90°(等量代換)
在△AED中, ∠ADE=90°( 三角形內(nèi)角和定理)
∴ CD⊥AB( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:數(shù)軸上任意兩點(diǎn)之間的距離與這兩點(diǎn)對應(yīng)的數(shù)的關(guān)系.
(1)如果點(diǎn)A表示數(shù)5,將點(diǎn)A先向左移動4個(gè)單位長度到達(dá)點(diǎn)B,那么點(diǎn)B表示的數(shù)是 ,A、B兩點(diǎn)間的距離是 .
如果點(diǎn)A表示數(shù)﹣2,將點(diǎn)A向右移動5個(gè)單位長度到達(dá)點(diǎn)B,那么點(diǎn)B表示的數(shù)是 ,A、B兩點(diǎn)間的距離是 .
(2)發(fā)現(xiàn):在數(shù)軸上,如果點(diǎn)M對應(yīng)的數(shù)是m,點(diǎn)N對應(yīng)的數(shù)是n,那么點(diǎn)M與點(diǎn)N之間的距離可表示為 (用m、n表示,且m≥n).
(3)應(yīng)用:利用你發(fā)現(xiàn)的結(jié)論解決下列問題:數(shù)軸上表示x和﹣2的兩點(diǎn)P與Q之間的距離是3,則x= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1與哪個(gè)角是內(nèi)錯(cuò)角,∠2與哪個(gè)角是同旁內(nèi)角,他們分別是哪兩條直線被哪條直線所截.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com