中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

精英家教網 > 高中數學 > 題目詳情
三棱錐P—ABC中,側面PAC與底面ABC垂直,PA=PB=PC=3.

(1)求證:AB⊥BC;

(2)如果AB=BC=,求側面PBC與側面PAC所成二面角的大小.

(1)證明:如圖,取AC的中點D,連結PD、BD.

因為PA=PC,所以PD⊥AC.

又已知面PAC⊥面ABC,所以PD⊥面ABC,D為垂足.

因為PA=PB=PC,

所以DA=DB=DC.可知AC為△ABC的外接圓直徑,因此AB⊥BC.

(2)解:

因為AB=BC,D為AC的中點,所以BD⊥AC.

又面PAC⊥面ABC,所以BD⊥平面PAC,D為垂足.

作BE⊥PC于點E,連結DE,

因為DE為BE在平面PAC內的射影,

所以DE⊥PC,∠BED為所求二面角的平面角.

在Rt△ABC中,AB=BC=,所以BD=.

在Rt△PDC中,PC=3,DC=,PD=,

所以DE=.

因此,在Rt△BDE中,tan∠BED==,∠BED=60°,

所以側面PBC與側面PAC所成的二面角為60°.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,△PAB是等邊三角形,∠PAC=∠PBC=90°.
(1)證明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=
π2
,PA=2,AB=AC=4,點D、E、F分別為BC、AB、AC的中點.
(I)求證:EF⊥平面PAD;
(II)求點A到平面PEF的距離;
(III)求二面角E-PF-A的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點O、D分別是AC、PC的中點,OP⊥底面ABC.
(Ⅰ)當k=
12
時,求直線PA與平面PBC所成角的大。
(Ⅱ)當k取何值時,O在平面PBC內的射影恰好為△PBC的重心?

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,PC⊥平面ABC,△ABC為正三角形,D、E、F分別是BC,PB,CA的中點.
(1)證明平面PBF⊥平面PAC;
(2)判斷AE是否平行于平面PFD,并說明理由;
(3)若PC=AB=2,求三棱錐P-DEF的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在正三棱錐P-ABC中,M,N分別是PB,PC的中點,若截面AMN⊥側面PBC,則此棱錐截面與底面所成的二面角正弦值是
6
6
6
6

查看答案和解析>>

同步練習冊答案