(
北京海淀模擬)設(shè)函數(shù)f(x)的定義域為R,若(1)
試判斷函數(shù)(2)
若函數(shù)(3)
求證:若a>1,則函數(shù)
證明: (1)∵|x||sin x|≤|x|,∵ ![]() ∴不滿足 |f(0)|≤|0|,∴ ![]() ∵當(dāng) x=0時,![]() ![]() ∴ ![]() (2) ∵函數(shù)y=f(x)是定義在R的奇函數(shù),∴ f(-0)=-f(0),即f(0)=0.∴ |f(x)-f(0)|≤|x-0|,即|f(x)|≤|x|,∴函數(shù) f(x)一定是Ω函數(shù).(3) 設(shè)F(x)=f(x)-x,則![]() ①當(dāng) x>0時,∵a>1,∴ ![]() 當(dāng) x=0時,![]() ∴當(dāng) x≥0時,![]() ∴ F(x)在[0,+∞)上是減函數(shù).F(x) ≤F(0),又F(0)=f(0)=0,∴ F(x)=f(x)-x≤0.∵ x>0時,![]() ∴函數(shù) f(x)在[0,+∞)上是增函數(shù),∴ f(x)≥f(0)=0.∴ 0≤f(x)≤x,即|f(x)|≤|x|.②當(dāng) x<0時,-x>0,∴|f(-x)|≤|-x|,顯然 f(x)為偶函數(shù),∴ |f(x)|≤|-x|,即|f(x)|≤|x|,∴在 R上恒有|f(x)|≤|x|成立,則函數(shù)f(x)一定是Ω函數(shù). |
科目:高中數(shù)學(xué) 來源: 題型:044
(2007
北京東城模擬)設(shè)函數(shù)(1)
求a,b的值;(2)
求函數(shù)f(x)的單調(diào)區(qū)間,并指出在每個區(qū)間上的增減性.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:013
(2007
北京崇文模擬)設(shè)函數(shù)f(x)在定義域內(nèi)可導(dǎo),y=f(x)的圖象如圖所示,則導(dǎo)函數(shù)[
]查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
(2007
北京崇文模擬)如果函數(shù)f(x)在區(qū)間D上有定義,且對任意(1)
已知(2)
對于(1)中的函數(shù)f(x)有下列性質(zhì):“若(3)
設(shè)A、B、C是函數(shù)查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
(2007
北京海淀模擬)設(shè)關(guān)于x的方程(1)
求αf(α)+βf(β)的值;(2)
判斷f(x)在區(qū)間(α、β)上的單調(diào)性,并加以證明;(3)
若λ,μ為正實數(shù),證明不等式:查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com