中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=kx3-3(k+1)x2-2k2+4,若f(x)的單調減區(qū)間為(0,4).
(1)求k的值;
(2)對任意的t∈[-1,1],關于x的方程2x2+5x+a=f(t)總有實根,求實數a的取值范圍.
分析:(1)先求導函數,利用f(x)的單調減區(qū)間為(0,4),可求k的值;
(2)分別依據三次函數與二次函數的最值,從而可建立不等式,進而可求實數a的取值范圍.
解答:解:(1)由題意,f′(x)=3kx2-6(k+1)x
∵f′(4)=0,∴k=1
(2)f′(t)=3t2-12t
∴-1<t<0,f′(t)>0,0<t<1,f′(t)<0
∵f(-1)=-5,f(1)=-3
∴f(t)≥-5
∵2x2+5x+a
8a-25
8

8a-25
8
≤-5

a≤-
15
8
點評:本題考查的知識點是函數的單調性及單調區(qū)間,函數的單調性的判斷與證明,其中根據導函數在函數的單調遞減區(qū)間建立方程是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設t=logax+logxa.
(Ⅰ)當x∈(1,a)∪(a,+∞)時,將f(x)表示成t的函數h(t),并探究函數h(t)是否有極值;
(Ⅱ)當k=4時,若對?x1∈(1,+∞),?x2∈[1,2],使f(x1)≤g(x2),試求實數b的取值范圍..

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
k+1x
(k<0),求使得f(x+k)>1成立的x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=k•a-x(k,a為常數,a>0且a≠1)的圖象過點A(0,1),B(3,8).
(1)求實數k,a的值;
(2)若函數g(x)=
f(x)-1f(x)+1
,試判斷函數g(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•蕪湖二模)給出以下五個命題:
①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函數f(x)=k•cosx的圖象經過點P(
π
3
,1),則函數圖象上過點P的切線斜率等于-
3

③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
④函數f(x)=(
1
2
)x-x
1
3
在區(qū)間(0,1)上存在零點.
⑤已知向量
a
=(1,-2)
與向量
b
=(1,m)
的夾角為銳角,那么實數m的取值范圍是(-∞,
1
2

其中正確命題的序號是
②③④
②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

(已知函數f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設t=logax+logxa.
(Ⅰ)當x∈(1,a)∪(a,+∞)時,試將f(x)表示成t的函數h(t),并探究函數h(t)是否有極值;
(Ⅱ)當k=4時,若對任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),試求實數b的取值范圍..

查看答案和解析>>

同步練習冊答案