【題目】如圖1,在直角梯形中,
,
,
,
,
,點E在
上,且
,將三角形
沿線段
折起到
的位置,
(如圖2).
(Ⅰ)求證:平面平面
;
(Ⅱ)在線段上存在點F,滿足
,求平面
與平面
所成的銳二面角的余弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)證明:取中點
,連結
,推導出
,
,從而
平面
,由此能證明平面
平面
.
(Ⅱ)取中點
,連結
,推導出
,
,
兩兩垂直,建立空間直角坐標系,利用向量法能求出平面
與平面
所成的銳二面角的余弦值.
解:(Ⅰ)證明:取中點
,連結
,
在直角梯形
中,
,
,
,
,
,
點在
上,且
,將三角形
沿線段
折起到
的位置,
,
,
,
在中,
,
,
,
,
在中,
,
,
,
,
,
,
,
,
平面
,
又面
,
平面
平面
.
(Ⅱ)解:取中點
,連結
,
,
,
,
,
面
,
,
,
兩兩垂直,
如圖,建立空間直角坐標系,,
,
,
,2,
,
,0,
,
又是
中點,
,2,
,
,0,
,
,1,
,
,3,
,又
,
,
設平面的法向量
,
,
,
,4,
,
,
,
,
則,取
,得
,1,
,
平面的法向量
,0,
,
設平面與平面
所成的銳二面角為
,
則,
平面
與平面
所成的銳二面角的余弦值為
.
科目:高中數(shù)學 來源: 題型:
【題目】設點為拋物線
外一點,過點
作拋物線
的兩條切線
,
,切點分別為
,
.
(Ⅰ)若點為
,求直線
的方程;
(Ⅱ)若點為圓
上的點,記兩切線
,
的斜率分別為
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某石雕構件的三視圖如圖所示,該石雕構件最中間的鏤空部分是一個獨特的幾何體——牟合方蓋(在一個立方體內作兩個互相垂直的內切圓柱,其相交的部分),其體積(其中
為最大截面圓的直徑).若三視圖中網(wǎng)格紙上小正方形的邊長為1,則該石雕構件的體積為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把方程表示的曲線作為函數(shù)
的圖象,則下列結論正確的是( )
①在R上單調遞減
②的圖像關于原點對稱
③的圖象上的點到坐標原點的距離的最小值為3
④函數(shù)不存在零點
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象與直線
相切.
(1)求實數(shù)的值;
(2)函數(shù),
,若對任意的
,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,
軸的非負半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求直線與曲線
的普通方程;
(2)若直線與曲線
交于
、
兩點,點
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在上的函數(shù)
,若存在
,使
恒成立,則稱
為“
型函數(shù)”;若存在
,使
恒成立,則稱
為“
型函數(shù)”.已知函數(shù)
.
(1)設函數(shù).若
,且
為“
型函數(shù)”,求
的取值范圍;
(2)設函數(shù).證明:當
,
為“
(1)型函數(shù)”;
(3)若,證明存在唯一整數(shù)
,使得
為“
型函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元五世紀,數(shù)學家祖沖之估計圓周率的值的范圍是:
,為紀念數(shù)學家祖沖之在圓周率研究上的成就,某教師在講授概率內容時要求學生從小數(shù)點后的6位數(shù)字1,4,1,5,9,2中隨機選取兩個數(shù)字做為小數(shù)點后的前兩位(整數(shù)部分3不變),那么得到的數(shù)字大于3.14的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當a>0時,求函數(shù)f(x)的單調區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com