(本小題滿分12分)
已知函數(shù)f(x)=ex+ax-1(e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)a=1時,求過點(1,f(1))處的切線與坐標(biāo)軸圍成的三角形的面積;
(II)若f(x)x2在(0,1 )上恒成立,求實數(shù)a的取值范圍.
(Ⅰ);(II)
.
解析試題分析:(Ⅰ)利用導(dǎo)數(shù)先求過點(1,f(1))處的切線的方程,再求切線與坐標(biāo)軸的交點坐標(biāo),易得三角型面積;(II)由得
,令
,利用導(dǎo)數(shù)求函數(shù)
在
上的單調(diào)性,便可得結(jié)論.
試題解析:(Ⅰ)當(dāng)時,
,
,
,
,
函數(shù)在點
處的切線方程為
,即
, 2分
設(shè)切線與x、y軸的交點分別為A,B.
令得
,令
得
,∴
,
,
.
在點處的切線與坐標(biāo)軸圍成的圖形的面積為
. 4分
(Ⅱ)由得
,
令,
令, 6分
,∵
,∴
,
在
為減函數(shù),
∴ , 8分
又∵,
∴
∴
在
為增函數(shù), 10分
,因此只需
. 12分
考點:1、利用導(dǎo)數(shù)求切線方程;2、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性;3、導(dǎo)數(shù)運算與函數(shù)的綜合運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)a=1時,求曲線在點(3,)處的切線方程
(2)求函數(shù)的單調(diào)遞增區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排,在路南側(cè)沿直線
排,現(xiàn)要在矩形區(qū)域
內(nèi)沿直線將
與
接通.已知
,
,公路兩側(cè)排管費用為每米1萬元,穿過公路的
部分的排管費用為每米2萬元,設(shè)
與
所成的小于
的角為
.
(Ⅰ)求矩形區(qū)域內(nèi)的排管費用
關(guān)于
的函數(shù)關(guān)系式;
(Ⅱ)求排管的最小費用及相應(yīng)的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x
-ax+(a-1)
,
.
(1)討論函數(shù)的單調(diào)性;(2)若
,設(shè)
,
(ⅰ)求證g(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x,x
,x
x
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)
的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,且
在區(qū)間
內(nèi)存在極值,求整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的導(dǎo)函數(shù)是
,
在
處取得極值,且
.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間
上的最大值為
,若對任意的
總有
成立,求
的取值范圍;
(Ⅲ)設(shè)是曲線
上的任意一點.當(dāng)
時,求直線OM斜率的最小值,據(jù)此判斷
與
的大小關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com