【題目】為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答,隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.
男 | 女 | 總計 | |
合格 | |||
不合格 | |||
總計 |
(1)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結果”有關?
(2)從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,求這2個學生性別不同的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
科目:高中數(shù)學 來源: 題型:
【題目】已知平面向量,
滿足:|
|=2,|
|=1.
(1)若(2
)(
)=1,求
的值;
(2)設向量,
的夾角為θ.若存在t∈R,使得
,求cosθ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟合作關系,共同打造政治互信、經(jīng)濟融合、文化包容的命運共同體.自2015年以來,“一帶一路”建設成果顯著.如圖是2015—2019年,我國對“一帶一路”沿線國家進出口情況統(tǒng)計圖,下列描述錯誤的是( )
A.這五年,出口總額之和比進口總額之和大
B.這五年,2015年出口額最少
C.這五年,2019年進口增速最快
D.這五年,出口增速前四年逐年下降
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點
的動直線
相交于
點,與橢圓
分別交于
與
不同四點,直線
的斜率
滿足
.已知當
與
軸重合時,
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在定點,使得
為定值?若存在,求出
點坐標并求出此定值;若不存在,說明理由.
【答案】(Ⅰ);(Ⅱ)
,
和
.
【解析】試題分析:(1)當與
軸重合時,
垂直于
軸,得
,得
,
從而得橢圓的方程;(2)由題目分析如果存兩定點,則
點的軌跡是橢圓或者雙曲線 ,所以把
坐標化,可得
點的軌跡是橢圓,從而求得定點
和點
.
試題解析:當
與
軸重合時,
, 即
,所以
垂直于
軸,得
,
,, 得
,
橢圓
的方程為
.
焦點
坐標分別為
, 當直線
或
斜率不存在時,
點坐標為
或
;
當直線斜率存在時,設斜率分別為
, 設
由
, 得:
, 所以:
,
, 則:
. 同理:
, 因為
, 所以
, 即
, 由題意知
, 所以
, 設
,則
,即
,由當直線
或
斜率不存在時,
點坐標為
或
也滿足此方程,所以點
在橢圓
上.存在點
和點
,使得
為定值,定值為
.
考點:圓錐曲線的定義,性質,方程.
【方法點晴】本題是對圓錐曲線的綜合應用進行考查,第一問通過兩個特殊位置,得到基本量,
,得
,
,從而得橢圓的方程,第二問由題目分析如果存兩定點,則
點的軌跡是橢圓或者雙曲線 ,本題的關鍵是從這個角度出發(fā),把
坐標化,求得
點的軌跡方程是橢圓
,從而求得存在兩定點
和點
.
【題型】解答題
【結束】
21
【題目】已知,
,
.
(Ⅰ)若,求
的極值;
(Ⅱ)若函數(shù)的兩個零點為
,記
,證明:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】虛擬現(xiàn)實()技術被認為是經(jīng)濟發(fā)展的新增長點,某地區(qū)引進
技術后,
市場收入(包含軟件收入和硬件收入)逐年翻一番,據(jù)統(tǒng)計該地區(qū)
市場收入情況如圖所示,則下列說法錯誤的是( )
A.該地區(qū)2019年的市場總收入是2017年的4倍
B.該地區(qū)2019年的硬件收入比2017年和2018年的硬件收入總和還要多
C.該地區(qū)2019年的軟件收入是2018年的軟件收入的3倍
D.該地區(qū)2019年的軟件收入是2017年的軟件收入的6倍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com