【題目】如圖,四邊形是邊長為2的菱形,
,
,
都垂直于平面
,且
.
(1)證明:平面
;
(2)若,求三棱錐
的體積.
【答案】(1)見解析;(2)
【解析】
(1)法一由,利用線面平行的判定定理,得到
面
,同理
面
,再由面面平行的判定定理得到面
面
即可.
(2)法一:連接,
交于點(diǎn)
,利用線面垂直的判定定理易得
面
,
面
,
面
,∴
,又
,
,四邊形
為矩形,利用等體積法
求解.
(1)法一∵,
面
,
面
,
∴面
,
∵平面
,
平面
,∴
,
又面
,
面
,∴
面
,
∵,∴面
面
,
又面
,∴
面
.
法二:取中點(diǎn)
,連接
,
,
∵平面
,
平面
,
∴,∴四邊形
為平行四邊形,
∴,∴四邊形
為平行四邊形,
∴.
∵平面
,
平面
,∴
,∴
,
,
,
四點(diǎn)共面.
∴面
.
又面
,∴
面
.
(2)法一:連接,
交于點(diǎn)
,
∵面
,
面
,∴
.
又,
,
∴面
.
在等邊中,
,
,
∵面
,
面
,
∴,又
,
.
∴四邊形為矩形,
∴.
∴.
法二:∵面
,
面
,∴
,
又面
,
面
,
∴面
.
取中點(diǎn)
,連接
,
∵面
,
面
,∴
,
在等邊中,
,
又,∴
面
,
∴到面
的距離即為
.
又,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自湖北武漢爆發(fā)新型冠狀病毒肺炎疫情以來,各地醫(yī)療物資缺乏,各生產(chǎn)企業(yè)紛紛加班加點(diǎn)生產(chǎn),某企業(yè)準(zhǔn)備購買三臺口罩生產(chǎn)設(shè)備,型號分別為A,B,C,已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時(shí)購買該易耗品,每件易耗品的價(jià)格為100元;也可以在設(shè)備使用過程中,隨時(shí)單獨(dú)購買易耗品,每件易耗品的價(jià)格為200元.為了決策在購買設(shè)備時(shí)應(yīng)同時(shí)購買的易耗品的件數(shù),該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)查每臺設(shè)備在一個(gè)月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.
每臺設(shè)備一個(gè)月中使用的易耗品的件數(shù) | 6 | 7 | 8 | |
頻數(shù) | 型號A | 30 | 30 | 0 |
型號B | 20 | 30 | 10 | |
型號C | 0 | 45 | 15 |
將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨(dú)立.
(1)求該單位一個(gè)月中A,B,C三臺設(shè)備使用的易耗品總數(shù)超過21件(不包括21件)的概率;
(2)以該單位一個(gè)月購買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購買設(shè)備時(shí)應(yīng)同時(shí)購買20件還是21件易耗品?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y,z均為正數(shù).
(1)若xy<1,證明:|x+z||y+z|>4xyz;
(2)若=
,求2xy2yz2xz的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某動漫影視制作公司長期堅(jiān)持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時(shí)也為公司贏得豐厚的利潤.該公司2013年至2019年的年利潤關(guān)于年份代號
的統(tǒng)計(jì)數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關(guān)):
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
年利潤 |
(Ⅰ)求關(guān)于
的線性回歸方程,并預(yù)測該公司2020年(年份代號記為
)的年利潤;
(Ⅱ)當(dāng)統(tǒng)計(jì)表中某年年利潤的實(shí)際值大于由中線性回歸方程計(jì)算出該年利潤的估計(jì)值時(shí),稱該年為
級利潤年,否則稱為
級利潤年.將
中預(yù)測的該公司2020年的年利潤視作該年利潤的實(shí)際值,現(xiàn)從2015年至2020年這
年中隨機(jī)抽取
年,求恰有
年為
級利潤年的概率.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(Ⅰ)若,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè).若
在
上恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)、點(diǎn)
及拋物線
.
(1)若直線過點(diǎn)
及拋物線
上一點(diǎn)
,當(dāng)
最大時(shí)求直線
的方程;
(2)軸上是否存在點(diǎn)
,使得過點(diǎn)
的任一條直線與拋物線
交于點(diǎn)
,且點(diǎn)
到直線
的距離相等?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
)=1.
(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)已知點(diǎn)M (2,0),若直線l與曲線C相交于P、Q兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程是
(
為參數(shù),
),在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程是
,等邊
的頂點(diǎn)都在
上,且點(diǎn)
,
,
按照逆時(shí)針方向排列,點(diǎn)
的極坐標(biāo)為
.
(Ⅰ)求點(diǎn),
,
的直角坐標(biāo);
(Ⅱ)設(shè)為
上任意一點(diǎn),求點(diǎn)
到直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出直線的極坐標(biāo)方程與曲線
的直角坐標(biāo)方程;
(2)已知與直線平行的直線
過點(diǎn)
,且與曲線
交于
兩點(diǎn),試求
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com