已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(xn,f(xn))處的切線與x軸的交點為(xn+1,0)(n∈N +),其中xn為正實數(shù).
(1)用xn表示xn+1;
(2)若x1=4,記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式;
(3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項和,證明Tn<3.
(1);(2)
;(3)詳見解析.
解析試題分析:(1)由題設(shè)條件知曲線y=f(x)在點處的切線方程是
.由此可知
.所以
.(2)由
,知
,同理
.故
.由此入手能夠?qū)С?img src="http://thumb.zyjl.cn/pic5/tikupic/ec/1/kdhlk2.png" style="vertical-align:middle;" />.(3)由題設(shè)知
,所以
,由此可知
.
解:(1)由題可得.
所以曲線在點
處的切線方程是:
.
即.
令,得
.
即.顯然
,
∴.
(2)由,知
,’同理
.----6’
故.-----7’
從而,即
.所以,數(shù)列
成等比數(shù)列.---8’
故.即
.----9’
從而,所以
.----10’
(3)由(Ⅱ)知,∴
∴ ---11’
當(dāng)時,顯然
.-------12’
當(dāng)時,
-----13’
∴.綜上,
.
考點:1.?dāng)?shù)列遞推式;2.等比關(guān)系的確定;3.?dāng)?shù)列的求和;4.不等式的證明.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),函數(shù)
的導(dǎo)函數(shù)
,且
,其中
為自然對數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式
成立,試求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)時,函數(shù)
圖象上的點都在
所表示的平面區(qū)域內(nèi),不等式
恒成立,求實數(shù)
的取值范圍. [來源:學(xué)科
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求曲線
在點
處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若對任意的都有
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知A,b是實數(shù),1和-1是函數(shù)f(x)=x3+Ax2+b x的兩個極值點.
(1)求A和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2(f′(x)是f(x)的導(dǎo)數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:×…×
<
(n≥2,n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
) =
,g (
)=
+
。
(1)求函數(shù)h ()=
(
)-g (
)的零點個數(shù),并說明理由;
(2)設(shè)數(shù)列滿足
,
,證明:存在常數(shù)M,使得對于任意的
,都有
≤
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,其中m∈R.
(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù) 若對任意大于等于2的實數(shù)x1,總存在唯一的小于2的實數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com