【題目】中國“一帶一路”戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住“一帶一路”帶來的機(jī)遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬元, 每生產(chǎn)
臺,需另投入成本
(萬元), 當(dāng)年產(chǎn)量不足
臺時(shí),
(萬元); 當(dāng)年產(chǎn)量不小于
臺時(shí)
(萬元), 若每臺設(shè)備售價(jià)為
萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
(1)求年利潤 (萬元)關(guān)于年產(chǎn)量
(臺)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺時(shí) ,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?
【答案】(1)(2)90
【解析】
試題分析:(1)年利潤,再根據(jù)產(chǎn)量分段求解析式:
(2)求分段函數(shù)最值,先分段求,再比較大小得最值,當(dāng)時(shí),根據(jù)二次函數(shù)對稱軸與定義區(qū)間位置關(guān)系求得:當(dāng)
時(shí),
取得最大值
;當(dāng)
時(shí),利用基本不等式求最值:當(dāng)
時(shí),
最大值為
,比較大小得當(dāng)產(chǎn)量為
臺時(shí), 該企業(yè)在這一電子設(shè)備中所獲利潤最大,最大值為
萬元.
試題解析:(1)當(dāng)時(shí),
;
當(dāng)時(shí),
,
.
(2)當(dāng)時(shí),
, 此時(shí), 當(dāng)
時(shí),
取得最大值, 最大值為
(萬元); 當(dāng)時(shí),
, 當(dāng)且僅當(dāng)
,即
時(shí),
最大值為
(萬元), 所以, 當(dāng)產(chǎn)量為
臺時(shí), 該企業(yè)在這一電子設(shè)備中所獲利潤最大,最大值為
萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,集合
.
(1)若,求實(shí)數(shù)
的取值范圍;
(2)是否存在實(shí)數(shù),使
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在“普及環(huán)保知識節(jié)”后,為了進(jìn)一步增強(qiáng)環(huán)保意識,從本校學(xué)生中隨機(jī)抽取了一批學(xué)生參加環(huán)保基礎(chǔ)知識測試.經(jīng)統(tǒng)計(jì),這批學(xué)生測試的分?jǐn)?shù)全部介于75至100之間.將數(shù)據(jù)分成以下組:第1組
,第2組
,第3組
,第4組
,第5組
,得到如圖所示的頻率分布直方圖.
(Ⅰ)求a的值;
(Ⅱ)現(xiàn)采用分層抽樣的方法,從第3,4,5組中隨機(jī)抽取6名學(xué)生座談,求每組抽取的學(xué)生人數(shù);
(Ⅲ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)隨機(jī)抽取學(xué)生所得測試分?jǐn)?shù)的平均值在第幾組(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司2016年前三個(gè)月的利潤(單位:百萬元)如下:
月份 | |||
利潤 |
(1)求利潤關(guān)于月份
的線性回歸方程;
(2)試用(1)中求得的回歸方程預(yù)測月和
月的利潤;
(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過萬?
相關(guān)公式: ,
=
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司2016年前三個(gè)月的利潤(單位:百萬元)如下:
月份 | |||
利潤 |
(1)求利潤關(guān)于月份
的線性回歸方程;
(2)試用(1)中求得的回歸方程預(yù)測月和
月的利潤;
(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過萬?
相關(guān)公式: ,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,離心率
,且橢圓
經(jīng)過點(diǎn)
,過橢圓
的左焦點(diǎn)
且不與坐標(biāo)軸垂直的直線交橢圓
于
,
兩點(diǎn).
(1)求橢圓的方程;
(2)設(shè)線段的垂直平分線與
軸交于點(diǎn)
,求△
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個(gè)從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測算該項(xiàng)目月處理成本(元)與月處理量
(噸)之間的函數(shù)關(guān)系可以近似地表示為:
,且每處理一噸生活垃圾,可得到能利用的生物柴油價(jià)值為200元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.
(1)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?
(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆世界低碳經(jīng)濟(jì)大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題,某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新式藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品,已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本(元)與月處理量
(噸)之間的函數(shù)關(guān)系可近似地表示為
,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為200元.
(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補(bǔ)貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題拋物線
的焦點(diǎn)
在橢圓
上.命題
直線
經(jīng)過拋物線
的焦點(diǎn)
,且直線
過橢圓
的左焦點(diǎn)
,
是真命題.
(I)求直線的方程;
(II)直線與拋物線相交于
、
,直線
、
,分別切拋物線于
,求
的交點(diǎn)
的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com