【題目】函數(shù),且
恒成立.
(1)求實(shí)數(shù)的集合
;
(2)當(dāng)時,判斷
圖象與
圖象的交點(diǎn)個數(shù),并證明.
(參考數(shù)據(jù):)
【答案】(1);(2)2個,證明見解析
【解析】
(1)要恒成立,只要
的最小值大于或等于零即可,所以只要討論求解看
是否有最小值;
(2)將圖像與
圖像的交點(diǎn)個數(shù)轉(zhuǎn)化為方程
實(shí)數(shù)解的個數(shù)問題,然后構(gòu)造函數(shù)
,再利用導(dǎo)數(shù)討論此函數(shù)零點(diǎn)的個數(shù).
(1)的定義域?yàn)?/span>
,因?yàn)?/span>
,
1°當(dāng)時,
在
上單調(diào)遞減,
時,使得
,與條件矛盾;
2°當(dāng)時,由
,得
;由
,得
,所以
在
上單調(diào)遞減,在
上單調(diào)遞增,即有
,由
恒成立,所以
恒成立,令
,
若;
若;而
時,
,要使
恒成立,
故.
(2)原問題轉(zhuǎn)化為方程實(shí)根個數(shù)問題,
當(dāng)時,
圖象與
圖象有且僅有2個交點(diǎn),理由如下:
由,即
,令
,
因?yàn)?/span>,所以
是
的一根;
,
1°當(dāng)時,
,
所以在
上單調(diào)遞減,
,即
在
上無實(shí)根;
2°當(dāng)時,
,
則在
上單調(diào)遞遞增,又
,
所以在
上有唯一實(shí)根
,且滿足
,
①當(dāng)時,
在
上單調(diào)遞減,此時
在
上無實(shí)根;
②當(dāng)時,
在
上單調(diào)遞增,
,故
在
上有唯一實(shí)根.
3°當(dāng)時,由(1)知,
在
上單調(diào)遞增,
所以,
故,所以
在
上無實(shí)根.
綜合1°,2°,3°,故有兩個實(shí)根,即
圖象與
圖象有且僅有2個交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點(diǎn),如圖②.
(1)求證:AM∥平面BEC;
(2)求點(diǎn)D到平面BEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
交于
兩點(diǎn).
(1)求的長;
(2)在以為極點(diǎn),
軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)
的極坐標(biāo)為
,求點(diǎn)
到線段
中點(diǎn)
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
,
,
)的圖象如圖所示,令
,則下列關(guān)于函數(shù)
的說法中正確的是( )
A. 函數(shù)圖象的對稱軸方程為
B. 函數(shù)的最大值為2
C. 函數(shù)的圖象上存在點(diǎn)
,使得在
點(diǎn)處的切線與直線
平行
D. 若函數(shù)的兩個不同零點(diǎn)分別為
,
,則
最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是國家統(tǒng)計(jì)局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費(fèi)價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.2019年12月份,全國居民消費(fèi)價格環(huán)比持平
B.2018年12月至2019年12月全國居民消費(fèi)價格環(huán)比均上漲
C.2018年12月至2019年12月全國居民消費(fèi)價格同比均上漲
D.2018年11月的全國居民消費(fèi)價格高于2017年12月的全國居民消費(fèi)價格
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的圖象經(jīng)過點(diǎn)
.
(1)求拋物線的方程和焦點(diǎn)坐標(biāo);
(2)直線交拋物線
于
,
不同兩點(diǎn),且
,
位于
軸兩側(cè),過點(diǎn)
,
分別作拋物線
的兩條切線交于點(diǎn)
,直線
,
與
軸的交點(diǎn)分別記作
,
.記
的面積為
,
面積為
,
面積為
,試問
是否為定值,若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
,t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直角坐標(biāo)系下直線與曲線
的普通方程;
(2)設(shè)直線與曲線
交于點(diǎn)
、
(二者可重合),交
軸于
,若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎疫情爆發(fā)以來,疫情防控牽掛著所有人的心. 某市積極響應(yīng)上級部門的號召,通過沿街電子屏、微信公眾號等各種渠道對此戰(zhàn)“疫”進(jìn)行了持續(xù)、深入的懸窗,幫助全體市民深入了解新冠狀病毒,增強(qiáng)戰(zhàn)勝疫情的信心. 為了檢驗(yàn)大家對新冠狀病毒及防控知識的了解程度,該市推出了相關(guān)的知識問卷,隨機(jī)抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制頻率分布直方圖如圖所示,把年齡落在區(qū)間和
內(nèi)的人分別稱為“青少年人”和“中老年人”. 經(jīng)統(tǒng)計(jì)“青少年人”和“中老年人”的人數(shù)比為19:21. 其中“青少年人”中有40人對防控的相關(guān)知識了解全面,“中老年人”中對防控的相關(guān)知識了解全面和不夠全面的人數(shù)之比是2:1.
(1)求圖中的值;
(2)現(xiàn)采取分層抽樣在和
中隨機(jī)抽取8名市民,從8人中任選2人,求2人中至少有1人是“中老年人”的概率是多少?
(3)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)統(tǒng)計(jì)結(jié)果判斷:能夠有99.9%的把握認(rèn)為“中老年人”比“青少年人”更加了解防控的相關(guān)知識?
了解全面 | 了解不全面 | 合計(jì) | |
青少年人 | |||
中老年人 | |||
合計(jì) |
附表及公式:,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com