【題目】已知圓心為的圓經(jīng)過(guò)點(diǎn)
和
,且圓心
在直線(xiàn)
上.
(1)求圓的方程;
(2)若過(guò)點(diǎn)的直線(xiàn)
被圓
截得的弦長(zhǎng)為
,求直線(xiàn)
的方程.
【答案】(1);
(2)直線(xiàn)的方程為
或
.
【解析】
(1)由圓的性質(zhì)可得:的垂直平分線(xiàn)方程與直線(xiàn)
聯(lián)立方程組求得圓心為
,用兩點(diǎn)之間距離公式求得
,即可求出圓的標(biāo)準(zhǔn)方差.
(2)由圓的半徑,弦長(zhǎng),利用垂徑定理和勾股定理求出弦心距,再利用圓心到直線(xiàn)的距離為
求出直線(xiàn)方程即可,需注意斜率不存在的情況.
(1)因?yàn)?/span>,
,所以線(xiàn)段
的中點(diǎn)坐標(biāo)為
,
直線(xiàn)的斜率
,因此線(xiàn)段
的垂直平分線(xiàn)方程是:
,即
.
圓心的坐標(biāo)是方程組
的解.解此方程組得:
,
所以圓心的坐標(biāo)是
.
圓的半徑長(zhǎng)
,
所以圓心為的圓的標(biāo)準(zhǔn)方程是
.
(2)因?yàn)?/span>,所以
在圓內(nèi).
又因?yàn)橹本(xiàn)被圓
截得的弦長(zhǎng)為
,
所以圓心到直線(xiàn)
的距離
①當(dāng)直線(xiàn)的斜率不存在時(shí),
,
到
的距離為
,符合題意.
②當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)
,即
.
所以,
,
解得,直線(xiàn)
為:
,即:
綜上:直線(xiàn)的方程為
或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且(b+c)tanC=﹣ctanA.
(1)求A;
(2)若b,c=2,點(diǎn)D在BC邊上,且AD=BD,求AD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是空氣質(zhì)量的一個(gè)重要指標(biāo),我國(guó)
標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即
日均值在
以下空氣質(zhì)量為一級(jí),在
之間空氣質(zhì)量為二級(jí),在
以上空氣質(zhì)量為超標(biāo).如圖是某地
月
日到
日
日均值(單位:
)的統(tǒng)計(jì)數(shù)據(jù),則下列敘述不正確的是( )
A.從日到
日,
日均值逐漸降低
B.這天的
日均值的中位數(shù)是
C.這天中
日均值的平均數(shù)是
D.從這天的日均
監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽出一天的數(shù)據(jù),空氣質(zhì)量為一級(jí)的概率是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年
月,電影《毒液》在中國(guó)上映,為了了解江西觀(guān)眾的滿(mǎn)意度,某影院隨機(jī)調(diào)查了本市觀(guān)看影片的觀(guān)眾,現(xiàn)從調(diào)查人群中隨機(jī)抽取部分觀(guān)眾.并用如圖所示的表格記錄了他們的滿(mǎn)意度分?jǐn)?shù)(
分制),若分?jǐn)?shù)不低于
分,則稱(chēng)該觀(guān)眾為“滿(mǎn)意觀(guān)眾”,請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問(wèn)題.
組別 | 分組 | 頻數(shù) | 頻率 |
第 | |||
第 | |||
第 | |||
第 | |||
第 | |||
合計(jì) |
(1)寫(xiě)出、
的值;
(2)畫(huà)出頻率分布直方圖,估算中位數(shù);
(3)在選取的樣本中,從滿(mǎn)意觀(guān)眾中隨機(jī)抽取名觀(guān)眾領(lǐng)取獎(jiǎng)品,求所抽取的
名觀(guān)眾中至少有
名觀(guān)眾來(lái)自第
組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,
平面
,平面
平面
,
是邊長(zhǎng)為2的等邊三角形,
,
.
(1)證明:平面平面
;
(2)求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).證明:
(1)存在唯一的極值點(diǎn);
(2)有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為倒數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(
),若不等式
對(duì)任意實(shí)數(shù)
恒成立,則實(shí)數(shù)
的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,
是雙曲線(xiàn)
的左,右焦點(diǎn),點(diǎn)
在雙曲線(xiàn)上,且
,則下列結(jié)論正確的是( )
A. 若,則雙曲線(xiàn)離心率的取值范圍為
B. 若,則雙曲線(xiàn)離心率的取值范圍為
C. 若,則雙曲線(xiàn)離心率的取值范圍為
D. 若,則雙曲線(xiàn)離心率的取值范圍為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線(xiàn),曲線(xiàn)C:就是其中之一(如圖).給出下列三個(gè)結(jié)論:
①曲線(xiàn)C恰好經(jīng)過(guò)6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));
②曲線(xiàn)C上任意一點(diǎn)到原點(diǎn)的距離都不超過(guò);
③曲線(xiàn)C所圍成的“心形”區(qū)域的面積小于3.
其中,所有正確結(jié)論的序號(hào)是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com