已知函數(shù)在
取得極值
(1)求的單調(diào)區(qū)間(用
表示);
(2)設(shè),
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問利用
根據(jù)題意在
取得極值,
對參數(shù)a分情況討論,可知
當(dāng)即
時遞增區(qū)間:
遞減區(qū)間:
,
當(dāng)即
時遞增區(qū)間:
遞減區(qū)間:
,
第二問中, 由(1)知:
在
,
,
在
從而求解。
解:
…..3分
在
取得極值,
……………………..4分
(1) 當(dāng)即
時 遞增區(qū)間:
遞減區(qū)間:
,
當(dāng)即
時遞增區(qū)間:
遞減區(qū)間:
,
………….6分
(2) 由(1)知:
在
,
,
在
……………….10分
, 使
成立
得:
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省嘉興市一中高二5月月考理數(shù) 題型:解答題
已知函數(shù)在
取得極值。
(Ⅰ)確定的值并求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于的方程
至多有兩個零點,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年福建師大附中高二第二學(xué)期模塊考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題10分)
已知函數(shù)在
取得極值。
(Ⅰ)確定的值并求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于的方程
至多有兩個零點,
求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省嘉興市高二5月月考理數(shù) 題型:解答題
已知函數(shù)在
取得極值。
(Ⅰ)確定的值并求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于的方程
至多有兩個零點,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題10分)已知函數(shù)在
取得極值。
(Ⅰ)確定的值并求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于的方程
至多有兩個零點,求實數(shù)
的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com