設數(shù)列

滿足

(Ⅰ)求

的通項公式;
(Ⅱ)設

,記

,證明:

。
(Ⅰ)

(Ⅱ)見解析
解:(Ⅰ)由

得:
數(shù)列

是等差數(shù)列,首項為

故

,從而

(Ⅱ)

所以

練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列

和

的通項公式分別為

,

(

),將集合

中的元素從小到大依次排列,構(gòu)成數(shù)列

。
⑴ 求

;
⑵ 求證:在數(shù)列

中、但不在數(shù)列

中的項恰為

;
⑶ 求數(shù)列

的通項公式。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等比數(shù)列

中,

,前

項和為

,若數(shù)列

也為等比數(shù)列,則

等于
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知兩個等比數(shù)列

,

,滿足

.
(1)若

=1,求數(shù)列

的通項公式;
(2)若數(shù)列

唯一,求

的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)已知數(shù)列

中,

且點

在直線

上.
(1)求數(shù)列

的通項公式;
(2)若函數(shù)

求函數(shù)

的最小值;
(3)設

表示數(shù)列

的前n項和.試問:是否存在關(guān)于

的整式

,使得

對于一切不小于2的自然數(shù)

恒成立? 若存在,寫出

的解析式,并加以證明;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列

滿足

+

=4
n-3(
n∈

).
(1)若數(shù)列

是等差數(shù)列,求

的值;
(2)當

=2時,求數(shù)列

的前
n項和

;
(3)若對任意
n∈

,都有

≥5成立,求

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知等比數(shù)列

中,公比

若

則

有( )
A.最小值-4 | B.最大值-4 | C.最小值12 | D.最大值12 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列{an}中,a3a7=-16,a4+a6=0,求{an}前n項和Sn.
查看答案和解析>>