.已知圓的方程為
,直線
的方程為
,點(diǎn)
在直線
上,過
點(diǎn)作圓
的切線
,切點(diǎn)為
.
(1)若,試求點(diǎn)
的坐標(biāo);
(2)若點(diǎn)的坐標(biāo)為
,過
作直線與圓
交于
兩點(diǎn),當(dāng)時(shí),求直線
的方程;
(3)求證:經(jīng)過三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).
解:(1)設(shè),由題可知
,所以
,解之得:
故所求點(diǎn)的坐標(biāo)為
或
. …………………………………………4分
(2)設(shè)直線的方程為:
,易知
存在,由題知圓心
到直線
的距離為
,所以
, …………………………………………6分
解得,或
,ks.5u
故所求直線的方程為:
或
.………………………8分
(3)設(shè),
的中點(diǎn)
,因?yàn)?sub>
是圓
的切線
所以經(jīng)過三點(diǎn)的圓是以
為圓心,以
為半徑的圓,
故其方程為:……………………………10分
化簡得:,此式是關(guān)于
的恒等式,
故解得
或
所以經(jīng)過三點(diǎn)的圓必過定點(diǎn)
或
.…………………………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的離心率為
,直線
:
與以原點(diǎn)為圓心、以橢圓
的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為
,右焦點(diǎn)
,直線
過點(diǎn)
且垂直于橢圓的長軸,動(dòng)直線
垂
直于點(diǎn)
,線段
垂直平分線交
于點(diǎn)
,求點(diǎn)
的軌跡
的方程;
(3)當(dāng)P不在軸上時(shí),在曲線
上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于
對(duì)稱,若存在,
求出的斜率范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省高三下學(xué)期第二次考試數(shù)學(xué)(文) 題型:解答題
(本題滿分12分)已知橢圓的離心率為
,
直線與以原點(diǎn)為圓心、以橢圓
的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線
過點(diǎn)F1,且垂直于橢圓的長軸,動(dòng)直
線垂直
于點(diǎn)P,線段PF2的垂直平分線交
于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點(diǎn)F2,求四邊形ABCD的面積
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com