記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設函數(shù)gn(x)=fn(x)-n2ln x,試問:是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數(shù)x0和m(m>0且m≠1)滿足=
,試比較x0與m的大小,并加以證明.
科目:高中數(shù)學 來源: 題型:解答題
已知,( a為常數(shù),e為自然對數(shù)的底).
(1)
(2)時取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設的極大值構成的函數(shù)
,將a換元為x,試判斷
是否能與
(m為確定的常數(shù))相切,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中
.
(1)若曲線在點
處的切線方程為
,求函數(shù)
的解析式;
(2)討論函數(shù)的單調(diào)性;
(3)若對于任意的,不等式
在
上恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若,求曲線
在點
處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)
的取值范圍;
(3)設函數(shù),若在
上至少存在一點
,使得
>
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)。
(1)當時,①求函數(shù)
的單調(diào)區(qū)間;②求函數(shù)
的圖象在點
處的切線方程;
(2)若函數(shù)既有極大值,又有極小值,且當
時,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)當a=0時,求曲線y=f(x)在點(1,f(1))處的切線的斜率;
(2)當a≠時,求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),函數(shù)
⑴當時,求函數(shù)
的表達式;
⑵若,函數(shù)
在
上的最小值是2 ,求
的值;
(3)⑵的條件下,求直線與函數(shù)
的圖象所圍成圖形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com