已知函數(shù)滿足對一切
都有
,且
,當
時有
.
(1)求的值;
(2)判斷并證明函數(shù)在
上的單調(diào)性;
(3)解不等式:.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中
。
(1)當a=1時,求它的單調(diào)區(qū)間;
(2)當時,討論它的單調(diào)性;
(3)若恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若時,
取得極值,求實數(shù)
的值;
(2)求在
上的最小值;
(3)若對任意,直線
都不是曲線
的切線,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f (x)的定義域為M,具有性質P:對任意x∈M,都有f (x)+f (x+2)≤2f (x+1).
(1)若M為實數(shù)集R,是否存在函數(shù)f (x)=ax (a>0且a≠1,x∈R) 具有性質P,并說明理由;
(2)若M為自然數(shù)集N,并滿足對任意x∈M,都有f (x)∈N. 記d(x)=f (x+1)-f (x).
(ⅰ) 求證:對任意x∈M,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求證:存在整數(shù)0≤c≤d(1)及無窮多個正整數(shù)n,滿足d(n)=c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),且對任意的實數(shù)
都有
成立.
(1)求實數(shù)的值;
(2)利用函數(shù)單調(diào)性的定義證明函數(shù)在區(qū)間
上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)生物體死亡后,它機體內(nèi)原有的碳14會按確定的規(guī)律衰減,大約每經(jīng)過5730年衰減為原來的一半,這個時間稱為“半衰期”.
(Ⅰ)設生物體死亡時體內(nèi)每克組織中的碳14的含量為1,根據(jù)上述規(guī)律,寫出生物體內(nèi)碳14的含量與死亡年數(shù)
之間的函數(shù)關系式;
(Ⅱ)湖南長沙馬王堆漢墓女尸出土時碳14的殘余量約占原始含量的76.7℅,試推算馬王堆漢墓的年代.(精確到個位;輔助數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com