【題目】已知函數(shù),
,
.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)令,且函數(shù)
有三個(gè)彼此不相等的零點(diǎn)0,m,n,其中
.
①若,求函數(shù)
在
處的切線方程;
②若對(duì),
恒成立,求實(shí)數(shù)t的去取值范圍.
【答案】(1)單調(diào)增區(qū)間是,
;(2)①
,②
或
【解析】
(1)先求得函數(shù),對(duì)函數(shù)
求導(dǎo),令
大于零,解不等式即可求得單調(diào)增區(qū)間;
(2)易知,
,①求出
,
的值,進(jìn)而求得切線方程;②由對(duì)
,
恒成立,可得
,分
與
兩種情況討論,從而可求得
的取值范圍.
(1)∵,
∴
∴,令
,得
或
.
∴的單調(diào)增區(qū)間是
,
.
(2)由方程,得m,n是方程
的兩實(shí)根,故
,
,且由判別式得
.
①若,得
,
,故
,得
,
因此,故函數(shù)
在
處的切線方程為
.
②若對(duì)任意的,都有
成立,所以
.
因?yàn)?/span>,
,所以
或
.
當(dāng)時(shí),對(duì)
有
,所以
,解得
.又因?yàn)?/span>
,得
,則有
;
當(dāng)時(shí),
,則存在
的極大值點(diǎn)
,且
.
由題意得,將
代入得
進(jìn)而得到
,得
.
又因?yàn)?/span>,得
.
綜上可知t的取值范圍是或
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為橢圓
的右焦點(diǎn),C的準(zhǔn)線與E交于P,Q兩點(diǎn),且
.
(1)求E的方程;
(2)過(guò)E的左頂點(diǎn)A作直線l交E于另一點(diǎn)B,且BO(O為坐標(biāo)原點(diǎn))的延長(zhǎng)線交E于點(diǎn)M,若直線AM的斜率為1,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(x+1)2,令f1(x)=f'(x),fn+1(x)=fn'(x),若fn(x)=ex(anx2+bnx+cn),記數(shù)列{}的前n項(xiàng)和為Sn,則下列選項(xiàng)中與S2019的值最接近的是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,離心率為
,
為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),
面積的最大值為
.
(1)求橢圓的方程;
(2)若直線與橢圓
相交于點(diǎn)
兩點(diǎn),問(wèn)
軸上是否存在點(diǎn)
,使得
是以
為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在新高考改革中,打破了文理分科的“”模式,不少省份采用了“
”,“
”,“
”等模式.其中“
”模式的操作又更受歡迎,即語(yǔ)數(shù)外三門(mén)為必考科目,然后在物理和歷史中選考一門(mén),最后從剩余的四門(mén)中選考兩門(mén).某校為了了解學(xué)生的選科情況,從高二年級(jí)的2000名學(xué)生(其中男生1100人,女生900人)中,采用分層抽樣的方法從中抽取n名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的n名學(xué)生中含男生110人,求n的值及抽取到的女生人數(shù);
(2)在(1)的情況下對(duì)抽取到的n名同學(xué)“選物理”和“選歷史”進(jìn)行問(wèn)卷調(diào)查,得到下列2×2列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選科目與性別有關(guān)?
選物理 | 選歷史 | 合計(jì) | |
男生 | 90 | ||
女生 | 30 | ||
合計(jì) |
(3)在(2)的條件下,從抽取的“選歷史”的學(xué)生中按性別分層抽樣再抽取5名,再?gòu)倪@5名學(xué)生中抽取2人了解選政治、地理、化學(xué)、生物的情況,求2人至少有1名男生的概率.
參考公式:.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線E:(
,
)的左、右焦點(diǎn)分別為
,
,已知點(diǎn)
為拋物線C:
的焦點(diǎn),且到雙曲線E的一條漸近線的距離為
,又點(diǎn)P為雙曲線E上一點(diǎn),滿足
.則
(1)雙曲線的標(biāo)準(zhǔn)方程為______;
(2)的內(nèi)切圓半徑與外接圓半徑之比為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面四邊形中,E,F是
,
中點(diǎn),
,
,
,將
沿對(duì)角線
折起至
,使平面
平面
,則四面體
中,下列結(jié)論不正確的是( )
A.平面
B.異面直線
與
所成的角為90°
C.異面直線與
所成的角為60°D.直線
與平面
所成的角為30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
是參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(2)若射線
與曲線
交于
,
兩點(diǎn),與曲線
交于
,
兩點(diǎn),求
取最大值時(shí)
的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com