【題目】“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動(dòng)新能源汽車產(chǎn)業(yè)的迅速發(fā)展,下表是近幾年我國(guó)某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計(jì)表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
銷量(萬臺(tái)) | 8 | 10 | 13 | 25 | 24 |
某機(jī)構(gòu)調(diào)查了該地區(qū)30位購(gòu)車車主的性別與購(gòu)車種類情況,得到的部分?jǐn)?shù)據(jù)如下表所示:
購(gòu)置傳統(tǒng)燃油車 | 購(gòu)置新能源車 | 總計(jì) | |
男性車主 | 6 | 24 | |
女性車主 | 2 | ||
總計(jì) | 30 |
(1)求新能源乘用車的銷量關(guān)于年份
的線性相關(guān)系數(shù)
,并判斷
與
是否線性相關(guān);
(2)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷是否有
的把握認(rèn)為購(gòu)車車主是否購(gòu)置新能源乘用車與性別有關(guān);
參考公式:,
,其中
.
,若
,則可判斷
與
線性相關(guān).
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1),
與
線性相關(guān)(2)填表見解析,有90%的把握認(rèn)為購(gòu)車車主是否購(gòu)置新能源乘用車與性別有關(guān)
【解析】
(1)計(jì)算出,
,
,
,
再代入相關(guān)系數(shù)公式計(jì)算可得;
(2)依題意,完善表格計(jì)算出與參數(shù)數(shù)據(jù)比較可得.
解:(1)依題意,
,
故
,
,
則
故與
線性相關(guān).
(2)依題意,完善表格如下:
購(gòu)置傳統(tǒng)燃油車 | 購(gòu)置新能源車 | 總計(jì) | |
男性車主 | 18 | 6 | 24 |
女性車主 | 2 | 4 | 6 |
20 | 10 | 30 |
故有90%的把握認(rèn)為購(gòu)車車主是否購(gòu)置新能源乘用車與性別有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線與拋物線
相交于
,
兩點(diǎn),且
,若
,
到
軸距離的乘積為
.
(1)求的方程;
(2)設(shè)點(diǎn)為拋物線
的焦點(diǎn),當(dāng)
面積最小時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年一種新奇水果深受廣大消費(fèi)者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟(jì)效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:
x | 1 | 3 | 4 | 6 | 7 |
y | 5 | 6.5 | 7 | 7.5 | 8 |
y與x可用回歸方程 ( 其中
,
為常數(shù))進(jìn)行模擬.
(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價(jià)格為150元/箱,試預(yù)測(cè)該新奇水果100箱的利潤(rùn)是多少元.|.
(Ⅱ)據(jù)統(tǒng)計(jì),10月份的連續(xù)16天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.
(i)若從箱數(shù)在內(nèi)的天數(shù)中隨機(jī)抽取2天,估計(jì)恰有1天的水果箱數(shù)在
內(nèi)的概率;
(ⅱ)求這16天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點(diǎn)值作代表)
參考數(shù)據(jù)與公式:設(shè),則
0.54 | 6.8 | 1.53 | 0.45 |
線性回歸直線中,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,
,
,
分別為內(nèi)角
,
,
的對(duì)邊,且滿
.
(1)求的大;
(2)再在①,②
,③
這三個(gè)條件中,選出兩個(gè)使
唯一確定的條件補(bǔ)充在下面的問題中,并解答問題.若________,________,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長(zhǎng)度單位,且以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸)中,圓
的極坐標(biāo)方程為
。
(1)求直線的普通方程和圓
的直角坐標(biāo)方程;
(2)設(shè)圓與直線
交于
,
兩點(diǎn),若點(diǎn)
的坐標(biāo)為
,求
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘數(shù)學(xué)家阿波羅尼斯在他的著作《圓錐曲線論》中記載了用平面切割圓錐得到圓錐曲線的方法.如圖,將兩個(gè)完全相同的圓錐對(duì)頂放置(兩圓錐的軸重合),已知兩個(gè)圓錐的底面半徑均為1,母線長(zhǎng)均為3,記過圓錐軸的平面為平面
(
與兩個(gè)圓錐側(cè)面的交線為
),用平行于
的平面截圓錐,該平面與兩個(gè)圓錐側(cè)面的交線即雙曲線
的一部分,且雙曲線
的兩條漸近線分別平行于
,則雙曲線
的離心率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇跡之一,其中較為著名的是胡夫金字塔.令人吃驚的并不僅僅是胡夫金字塔的雄壯身姿,還有發(fā)生在胡夫金字塔上的數(shù)字“巧合”.如胡夫金字塔的底部周長(zhǎng)如果除以其高度的兩倍,得到的商為3.14159,這就是圓周率較為精確的近似值.金字塔底部形為正方形,整個(gè)塔形為正四棱錐,經(jīng)古代能工巧匠建設(shè)完成后,底座邊長(zhǎng)大約230米.因年久風(fēng)化,頂端剝落10米,則胡夫金字塔現(xiàn)高大約為( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
(1)求曲線C和直線的直角坐標(biāo)系方程;
(2)已知直線
與曲線C相交于A,B兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
的左、右焦點(diǎn)分別為
、
,
為橢圓短軸端點(diǎn),若
為直角三角形且周長(zhǎng)為
.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
兩點(diǎn),直線
,
斜率的乘積為
,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com