【題目】設(shè),
.已知函數(shù)
,
.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)和
的圖象在公共點(diǎn)(x0,y0)處有相同的切線,
(i)求證:在
處的導(dǎo)數(shù)等于0;
(ii)若關(guān)于x的不等式在區(qū)間
上恒成立,求b的取值范圍.
【答案】(I)單調(diào)遞增區(qū)間為,
,單調(diào)遞減區(qū)間為
.(II)(i)見解析.(ii)
.
【解析】
試題求導(dǎo)數(shù)后因式分解根據(jù),得出
,根據(jù)導(dǎo)數(shù)的符號(hào)判斷函數(shù)的單調(diào)性,給出單調(diào)區(qū)間,對(duì)
求導(dǎo),根據(jù)函數(shù)
和
的圖象在公共點(diǎn)(x0,y0)處有相同的切線,解得
,根據(jù)
的單調(diào)性可知
在
上恒成立,關(guān)于x的不等式
在區(qū)間
上恒成立,得出
,得
,
,
求出的范圍,得出
的范圍.
試題解析:(I)由,可得
,
令,解得
,或
.由
,得
.
當(dāng)變化時(shí),
,
的變化情況如下表:
所以,的單調(diào)遞增區(qū)間為
,
,單調(diào)遞減區(qū)間為
.
(II)(i)因?yàn)?/span>,由題意知
,
所以,解得
.
所以,在
處的導(dǎo)數(shù)等于0.
(ii)因?yàn)?/span>,
,由
,可得
.
又因?yàn)?/span>,
,故
為
的極大值點(diǎn),由(I)知
.
另一方面,由于,故
,
由(I)知在
內(nèi)單調(diào)遞增,在
內(nèi)單調(diào)遞減,
故當(dāng)時(shí),
在
上恒成立,從而
在
上恒成立.
由,得
,
.
令,
,所以
,
令,解得
(舍去),或
.
因?yàn)?/span>,
,
,故
的值域?yàn)?/span>
.
所以,的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一張半徑為1米的圓形鐵皮,工人師傅需要剪一塊頂角為銳角的等腰三角形,不妨設(shè)
,
邊上的高為
,圓心為
,為了使三角形的面積最大,我們?cè)O(shè)計(jì)了兩種方案.
(1)方案1:設(shè) 為
,用
表示
的面積
; 方案2:設(shè)
的高
為
,用
表示
的面積
;
(2)請(qǐng)從(1)中的兩種方案中選擇一種,求出面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海輪以每小時(shí)30海里的速度航行,在點(diǎn)測(cè)得海面上油井
在南偏東
,海輪向北航行40分鐘后到達(dá)點(diǎn)
,測(cè)得油井
在南偏東
,海輪改為北偏東
的航向再行駛80分鐘到達(dá)點(diǎn)
,則
兩點(diǎn)的距離為(單位:海里)
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,底面ABC,
.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),
,
.
(1)求證:平面BDE;
(2)求二面角C-EM-N的正弦值.
(3)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓
過點(diǎn)
,離心率為
.
分別是橢圓
的上、下頂點(diǎn),
是橢圓
上異于
的一點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)在直線
上,且
,求
的面積;
(3)過點(diǎn)作斜率為
的直線分別交橢圓
于另一點(diǎn)
,交
軸于點(diǎn)
,且點(diǎn)
在線段
上(不包括端點(diǎn)
),直線
與直線
交于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:
,
為左、右焦點(diǎn),
為短軸端點(diǎn),且
,離心率為
,
為坐標(biāo)原點(diǎn).
(1)求橢圓的方程,
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn),
,且滿足
?若存在,求出該圓的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司利用簡單隨機(jī)抽樣方法,對(duì)投保車輛進(jìn)行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計(jì)如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(shù)(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計(jì)賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機(jī)的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機(jī)的占20%,估計(jì)在已投保車輛中,新司機(jī)獲賠金額為4000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站針對(duì)“2016年春節(jié)放假安排”開展網(wǎng)上問卷調(diào)查,提出了A,B兩種放假方案,調(diào)查結(jié)果如表:(單位:萬人)
人群 | 青少年 | 中年人 | 老年人 |
支持A方案 | 200 | 400 | 800 |
支持B方案 | 100 | 100 | n |
已知從所有參與調(diào)查的人中任選1人是“老年人”的概率為.
(1)求n的值;
(2)從參與調(diào)查的“老年人”中,用分層抽樣的方法抽取6人,在這6人中任意選取2人,求恰好有1人“支持B方案”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)據(jù)是鄭州市普通職工
個(gè)人的年收入,若這
個(gè)數(shù)據(jù)的中位數(shù)為
,平均數(shù)為
,方差為
,如果再加上世界首富的年收入
,則這
個(gè)數(shù)據(jù)中,下列說法正確的是( )
A.年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
B.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com