(本小題滿分16分)
已知函數(shù)

(1) 若

時,

恒成立,求

的取值范圍;
(2) 若

時,函數(shù)

在實數(shù)集

上有最小值,求實數(shù)

的取值范圍.
(1)

.
(2)當

時,函數(shù)

有最小值為

;當

時,函數(shù)

無最小值.
本試題主要是考查了分段函數(shù)的最值和函數(shù)與不等式的關(guān)系的綜合運用。
(1)因為

時,

,所以令

,則有

,

當

時恒成立,轉(zhuǎn)化為

,即

在

上恒成立利用分離參數(shù)的思想得到范圍。
(2)當

時,

,即

,
對于二次函數(shù)要討論對稱軸與定義域的關(guān)系得到最值。
(1) 因為

時,

,所以令

,則有

,

當

時恒成立,轉(zhuǎn)化為

,即

在

上恒成立,………2分
令
p (
t)=
t-,

,則

,所以
p (
t)=
t-在

上單調(diào)遞增,
所以

,所以

,解得

. ……………………………………6分
(2) 當

時,

,即

,
當

時,即

,

;
當

時,即

,

.……………………………………………9分
當

時,

,令

,

,則

,
當

時,即

,

;
當

時,即

,

,此時

無最小值;……………………12分
所以,當

時,即

,函數(shù)

;
當

時,

,函數(shù)

無最小值;
當

時,

,函數(shù)

無最小值.…………………………15分
綜上所述,當

時,函數(shù)

有最小值為

;當

時,函數(shù)

無最小值.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)求函數(shù)

的極大值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
用

表示a、b、c這三個數(shù)中的最小值。設


,則f(x)的最大值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
給出定義:若
m-

<
x≤
m+

(其中
m為整數(shù)),則
m叫做離實數(shù)
x最近的
整數(shù),記作{
x}=
m.在此基礎上給出下列關(guān)于函數(shù)
f(
x)=|
x-{
x}|的四個命題:
①數(shù)
y=
f(
x)的定義域為R,值域為[0,

];
②函數(shù)
y=
f(
x)的圖象關(guān)于直線
x=

(
k∈Z)對稱;
③函數(shù)
y=
f(
x)是周期函數(shù),最小正周期為1;
④函數(shù)
y=
f(
x)在[-

,

]上是增函數(shù).
其中正確的命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設函數(shù)

,滿足

,則

與

的大小關(guān)系
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)

是偶函數(shù),當

時,

,且當

時,

的值域是

,則

的值是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)

在區(qū)間

上為減函數(shù),則a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知

是奇函數(shù),當

時,

,且當

時,

恒成立,則

的最小值為
.
查看答案和解析>>