已知函數(shù)(
為自然對(duì)數(shù)的底數(shù)),
(
為常數(shù)),
是實(shí)數(shù)集
上的奇函數(shù).
(1)求證:;
(2)討論關(guān)于的方程:
的根的個(gè)數(shù);
(3)設(shè),證明:
(
為自然對(duì)數(shù)的底數(shù)).
(1)證明詳見解析.(2);
;
.(3)證明詳見解析.
【解析】
試題分析:(1)構(gòu)造函數(shù)則
,求出
>0時(shí)x的取值,即函數(shù)h(x)的單調(diào)增區(qū)間,
時(shí)x的取值,即函數(shù)h(x)的單調(diào)減區(qū)間,可得
即
即可.(2)由
是
上的奇函數(shù)可得
,構(gòu)造函數(shù)
求
,根據(jù)導(dǎo)數(shù)的性質(zhì)求出函數(shù)
的單調(diào)區(qū)間,函數(shù)
的最大值為
,然后再根據(jù)直線y=m與函數(shù)
的交點(diǎn)個(gè)數(shù)判斷原方程根的個(gè)數(shù)情況.(3)由(1)知
,令
,
試題解析:(1)證:令,令
時(shí)
時(shí),
.
∴
∴ 即
. 4分
(2)為R上的奇函數(shù),
令
8分
。
(3)由(1)知,令
,則
,所以原式=
+
+···+
+1,然后用縮放法證明即可.
于是,
∴=
+
+···+
+1
+
+···+
+1=
.12分
考點(diǎn):1.求函數(shù)的導(dǎo)數(shù);2.導(dǎo)數(shù)的性質(zhì)和函數(shù)的零根;3.不等式的證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共12分)已知函數(shù)(
為自然對(duì)數(shù)的底數(shù)),
(
為常數(shù)),
是實(shí)數(shù)集
上的奇函數(shù).(Ⅰ)求證:
;
(Ⅱ)討論關(guān)于的方程:
的根的個(gè)數(shù);
(Ⅲ)設(shè),證明:
(
為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年吉林通化第一中學(xué)高三上學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)其中
為自然對(duì)數(shù)的底數(shù),
.
(1)設(shè),求函數(shù)
的最值;
(2)若對(duì)于任意的,都有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省溫州市高二下學(xué)期期中考試文科數(shù)學(xué)(解析版) 題型:解答題
已知函數(shù).(
為自然對(duì)數(shù)的底)
(Ⅰ)求的最小值;
(Ⅱ)是否存在常數(shù)使得
對(duì)于任意的正數(shù)
恒成立?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆河北省高三第一學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知.函數(shù).e為自然對(duì)數(shù)的底
(1)當(dāng)時(shí)取得最小值,求
的值;
(2)令,求函數(shù)
在點(diǎn)P
處的切線方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年天津市高三第二次月考理科數(shù)學(xué) 題型:解答題
已知函數(shù)其中
為自然對(duì)數(shù)的底數(shù)
(1)當(dāng)時(shí),求曲線
在
處的切線方程;
(2)若函數(shù)為單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍;
(3)若時(shí),求函數(shù)
的極小值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com