如圖,在四棱錐中,底面
是邊長(zhǎng)為
的正方形,
,
,且
.
(Ⅰ)求證:平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一點(diǎn)
,使直線
與平面
所成的角是
?若存在,求
的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ)詳見(jiàn)解析;(Ⅱ);(Ⅲ)存在,
解析試題分析:(Ⅰ)先證平面
可得
。同理可證
,最后根據(jù)線面垂直的判定定理可得
平面
。(Ⅱ)可建系用空間向量法,先求邊長(zhǎng)得點(diǎn)的坐標(biāo)即可得向量的坐標(biāo)。先求面
和面
的法向量,再求兩個(gè)法向量所成角的余弦值。兩法向量所成的角與二面角相等或互補(bǔ)。需觀察圖像的二面角的余弦值。(Ⅲ)假設(shè)棱
上存在點(diǎn)
滿足條件。設(shè)
。在(Ⅱ)以求出面
的法向量,根據(jù)線面角的定義可知直線
與平面
所成的角正弦值等于
與面
的法向量所成角的余弦值的絕對(duì)值。列式求
,若
則說(shuō)明假設(shè)成立,否則假設(shè)不成立。
試題解析:(Ⅰ)證明:在正方形中,
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8e/5/ibozo.png" style="vertical-align:middle;" />,,
所以 平面
. 1分
因?yàn)?平面
,
所以 . 2分
同理,.
因?yàn)?,
所以 平面
. 3分
(Ⅱ)解:連接,由(Ⅰ)知
平面
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3c/3/2iocg.png" style="vertical-align:middle;" />平面,
所以. 4分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e6/a/1xm844.png" style="vertical-align:middle;" />,,
所以.
分別以,
,
所在的直線分別為
,
,
軸,建立空間直角坐標(biāo)系,如圖所示.
由題意可得:,
,
,
.
所以,
,
,
.
設(shè)平面的一個(gè)法向量
,
則 即
令
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M為A1B與AB1的交點(diǎn),N為棱B1C1的中點(diǎn),
(1)求證:MN∥平面AA1C1C;
(2)若AC=AA1,求證:MN⊥平面A1BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形ABCD為矩形,AD 平面ABE,AE=EB=BC=2,F為CE上的點(diǎn).且BF
平面ACE.
(1)求證:平面ADE平面BCE;
(2)求四棱錐E-ABCD的體積;
(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng)
(Ⅰ)求三棱錐E-PAD的體積;
(Ⅱ)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;
(Ⅲ)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在幾何體中,點(diǎn)
在平面ABC內(nèi)的正投影分別為A,B,C,且
,
,E為
中點(diǎn),
(1)求證;CE∥平面,
(2)求證:求二面角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com