(本小題滿(mǎn)分15分)
已知橢圓C:+=1的離心率為,左焦點(diǎn)為F(-1,0),
(1) 設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線L與橢圓C交于M,N兩點(diǎn),若,求直線L的方程;
(2)橢圓C上是否存在三點(diǎn)P,E,G,使得S△OPE=S△OPG=S△OEG=?
(1) 和
; (2) 橢圓
上不存在滿(mǎn)足條件的三點(diǎn)
解析試題分析:(1) 由已知 可解得
,即橢圓方程為
?傻
。根據(jù)點(diǎn)斜式可得直線
即直線
方程為
,將直線方程和橢圓方程聯(lián)立消去
整理為關(guān)于
的一元二次方程,可得根與系數(shù)的關(guān)系。再根據(jù)
可求得
的值,即可得所求直線方程。 (2)根據(jù)兩點(diǎn)確定一條直線可設(shè)
兩點(diǎn)確定的直線為 l,注意討論直線的斜率存在與否,用弦長(zhǎng)公式可得
的長(zhǎng),用點(diǎn)到線的距離公式可得點(diǎn)
到線
的距離,從而可得三角形面積。同理可得另兩個(gè)三角形面積,聯(lián)立方程可得三點(diǎn)橫縱坐標(biāo)的平方,根據(jù)三點(diǎn)坐標(biāo)判斷能否與點(diǎn)
構(gòu)成三角形,若能說(shuō)明存在滿(mǎn)足要求的三點(diǎn)否則說(shuō)明不存在。
試題解析:(1)由題意:橢圓的方程為.
設(shè)點(diǎn),由
得直線
的方程為
.
由方程組消去
,整理得
,
可得,
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9b/0/1vnlm4.png" style="vertical-align:middle;" />,
所以
由已知得,解得
.
故所求直線的方程為:
和
(2) 假設(shè)存在滿(mǎn)足
.
不妨設(shè)兩點(diǎn)確定的直線為 l,
(ⅰ)當(dāng)直線l的斜率不存在時(shí),兩點(diǎn)關(guān)于
軸對(duì)稱(chēng),
所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8d/c/vxjcl3.png" style="vertical-align:middle;" />在橢圓上,所以.①
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/47/f/1pjnl3.png" style="vertical-align:middle;" />,所以|,②
由①、②得,
此時(shí),
.
(ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為,
由題意知,將其代入
得
,
其中,
即,(★)
又,
所以.
因?yàn)辄c(diǎn)到直線l的距離為
,
所以.
又,
整理得 ,且符合(★)式.
此時(shí),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓C1:=1(a>b>0)的左、右焦點(diǎn)分別為為
,
恰是拋物線C2:
的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
.
(1)求C1的方程;
(2)平面上的點(diǎn)N滿(mǎn)足,直線l∥MN,且與C1交于A,B兩點(diǎn),若
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知,
,
,
分別是橢圓
的四個(gè)頂點(diǎn),△
是一個(gè)邊長(zhǎng)為2的等邊三角形,其外接圓為圓
.
(1)求橢圓及圓
的方程;
(2)若點(diǎn)是圓
劣弧
上一動(dòng)點(diǎn)(點(diǎn)
異于端點(diǎn)
,
),直線
分別交線段
,橢圓
于點(diǎn)
,
,直線
與
交于點(diǎn)
.
(ⅰ)求的最大值;
(ⅱ)試問(wèn):..,
兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn),圓C:
與橢圓E:
有一個(gè)公共點(diǎn)
,
分別是橢圓的左、右焦點(diǎn),直線
與圓C相切.
(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的右焦點(diǎn)為
,短軸的端點(diǎn)分別為
,且
.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)且斜率為
的直線
交橢圓于
兩點(diǎn),弦
的垂直平分線與
軸相交于點(diǎn)
.設(shè)弦
的中點(diǎn)為
,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知平面內(nèi)一動(dòng)點(diǎn)到兩個(gè)定點(diǎn)
、
的距離之和為
,線段
的長(zhǎng)為
.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)過(guò)點(diǎn)作直線
與軌跡
交于
、
兩點(diǎn),且點(diǎn)
在線段
的上方,
線段的垂直平分線為
.
①求的面積的最大值;
②軌跡上是否存在除
、
外的兩點(diǎn)
、
關(guān)于直線
對(duì)稱(chēng),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓C1:的右焦點(diǎn)為F,P為橢圓上的一個(gè)動(dòng)點(diǎn).
(1)求線段PF的中點(diǎn)M的軌跡C2的方程;
(2)過(guò)點(diǎn)F的直線l與橢圓C1相交于點(diǎn)A、D,與曲線C2順次相交于點(diǎn)B、C,當(dāng)時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)在雙曲線
上,且雙曲線的一條漸近線的方程是
.
(1)求雙曲線的方程;
(2)若過(guò)點(diǎn)且斜率為
的直線
與雙曲線
有兩個(gè)不同交點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)設(shè)(2)中直線與雙曲線
交于
兩個(gè)不同點(diǎn),若以線段
為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
知橢圓的兩焦點(diǎn)
、
,離心率為
,直線
:
與橢圓
交于
兩點(diǎn),點(diǎn)
在
軸上的射影為點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求直線的方程,使
的面積最大,并求出這個(gè)最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com