【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面
側(cè)面
,
,楔面
是邊長為2的正三角形,點(diǎn)
在側(cè)面
的射影是矩形
的中心
,點(diǎn)
在
上,且
(1)證明:平面
;
(2)求楔面與側(cè)面
所成二面角的余弦值.
【答案】(1)見解析;(2).
【解析】
(1)做輔助線連接交
于
,連接
,
.根據(jù)
平面
,得到平面
平面
,又平面
平面
,則平面
平面
,
利用勾股定理計算出,再根據(jù)
,
,
,得
,
,則可證得
平面
.
(2)法一:向量法:建立如圖所示的空間直角坐標(biāo)系,列出各點(diǎn)的坐標(biāo)求出向量,
.求出兩個平面的法向量,利用余弦公式即可求出楔面
與側(cè)面
所成二面角的余弦值.
法二:幾何法:取的中點(diǎn)
,連接
,
.
即為楔面
與側(cè)面
所成二面角的平面角.求出
、
、
各邊長度,即可求出
,則得到楔面
與側(cè)面
所成二面角的余弦值.
解:(1)證明:如圖,連接交
于
,連接
,
.
則是
的中點(diǎn),
.
因為平面
,所以平面
平面
,
又平面平面
,
所以平面平面
,
根據(jù)題意,四邊形和
是全等的直角梯形,
三角形和
是全等的等腰直角三角形,
所以,
.
在直角三角形中,
,
所以,
,
,
于是,
,
所以,
.
因為平面
,
,
所以平面
.
(2)法一:向量法:以為坐標(biāo)原點(diǎn),
,
所在直線分別為
軸、
軸,建立如圖所示的空間直角坐標(biāo)系,則
,
,
,
,
.
設(shè)平面的一個法向量為
,
則,取
,
平面的一個法向量為
,
所以,
所以楔面與側(cè)面
所成二面角的余弦值為
.
法二:幾何法:如圖,取的中點(diǎn)
,連接
,
.
即為楔面
與側(cè)面
所成二面角的平面角.
在直角三角形中,
,
,
所以,
所以楔面與側(cè)面
所成二面角的余弦值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程為:
(
為參數(shù)),
,
為直線
上距離為
的兩動點(diǎn),點(diǎn)
為曲線
上的動點(diǎn)且不在直線
上.
(1)求曲線的普通方程及直線
的直角坐標(biāo)方程.
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,
,
,
,
分別是
和
的中點(diǎn),將
沿著
向上翻折到
的位置,連接
,
.
(1)求證:平面
;
(2)若翻折后,四棱錐的體積
,求
的面積
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為配合“2019雙十二”促銷活動,某公司的四個商品派送點(diǎn)如圖環(huán)形分布,并且公司給四個派送點(diǎn)準(zhǔn)備某種商品各50個.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給
四個派送點(diǎn)的商品數(shù)調(diào)整為40,45,54,61,但調(diào)整只能在相鄰派送點(diǎn)進(jìn)行,每次調(diào)動可以調(diào)整1件商品.為完成調(diào)整,則( )
A.最少需要16次調(diào)動,有2種可行方案
B.最少需要15次調(diào)動,有1種可行方案
C.最少需要16次調(diào)動,有1種可行方案
D.最少需要15次調(diào)動,有2種可行方案
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),下述四個結(jié)論:
①是偶函數(shù);
②的最小正周期為
;
③的最小值為0;
④在
上有3個零點(diǎn)
其中所有正確結(jié)論的編號是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】10月1日,某品牌的兩款最新手機(jī)(記為型號,
型號)同時投放市場,手機(jī)廠商為了解這兩款手機(jī)的銷售情況,在10月1日當(dāng)天,隨機(jī)調(diào)查了5個手機(jī)店中這兩款手機(jī)的銷量(單位:部),得到下表:
手機(jī)店 |
|
|
|
|
|
| 6 | 6 | 13 | 8 | 11 |
| 12 | 9 | 13 | 6 | 4 |
(Ⅰ)若在10月1日當(dāng)天,從,
這兩個手機(jī)店售出的新款手機(jī)中各隨機(jī)抽取1部,求抽取的2部手機(jī)中至少有一部為
型號手機(jī)的概率;
(Ⅱ)現(xiàn)從這5個手機(jī)店中任選3個舉行促銷活動,用型號手機(jī)銷量超過
型號手機(jī)銷量的手機(jī)店的個數(shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望;
(III)經(jīng)測算,型號手機(jī)的銷售成本
(百元)與銷量(部)滿足關(guān)系
.若表中
型號手機(jī)銷量的方差
,試給出表中5個手機(jī)店的
型號手機(jī)銷售成本的方差
的值.(用
表示,結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù) ,有
,在
上,
,若
,則實(shí)數(shù)m的取值范圍為( )
A.B.
C.[-3,3]D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)到點(diǎn)
的距離比到直線
的距離小
,設(shè)點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)過曲線上一點(diǎn)
(
)作兩條直線
,
與曲線
分別交于不同的兩點(diǎn)
,
,若直線
,
的斜率分別為
,
,且
.證明:直線
過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com