【題目】已知向量,
,角
,
,
為
的內(nèi)角,其所對(duì)的邊分別為
,
,
.
(1)當(dāng)取得最大值時(shí),求角
的大。
(2)在(1)成立的條件下,當(dāng)時(shí),求
的取值范圍.
【答案】(1)(2)
【解析】分析:(1)由兩向量的坐標(biāo),利用平面向量的數(shù)量積運(yùn)算列出關(guān)系式,利用誘導(dǎo)公式及二倍角的余弦函數(shù)公式化簡(jiǎn),整理后得到關(guān)于的二次函數(shù),由
的范圍求出
的范圍,利用正弦函數(shù)的圖象與性質(zhì)得出此時(shí)
的范圍,利用二次函數(shù)的性質(zhì)即可求出
取得最大值時(shí)
的度數(shù);
(2)由及
的值,利用正弦定理表示出
,再利用三角形的內(nèi)角和定理用
表示出
,將表示出的
代入
中,利用二倍角的余弦函數(shù)公式化簡(jiǎn),整理后利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由
的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的圖象與性質(zhì)求出此時(shí)正弦函數(shù)的值域,即可確定出
的取值范圍.
詳解:
(1)
,令
,
,
原式,當(dāng)
,即
,
時(shí),
取得最大值.
(2)當(dāng)時(shí),
,
.由正弦定理得:
(
為
的外接圓半徑)
于是
.
由,得
,于是
,
,
所以的范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次趣味校園運(yùn)動(dòng)會(huì)的頒獎(jiǎng)儀式上,高一、高二、高三代表隊(duì)人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會(huì)組委會(huì)在頒獎(jiǎng)過程中穿插抽獎(jiǎng)活動(dòng),并用分層抽樣的方法從三個(gè)代表隊(duì)中共抽取20人在前排就座,其中高二代表隊(duì)有6人.
(1)求n的值;
(2)把在前排就座的高二代表隊(duì)6人分別記為a,b,c,d,e,f,現(xiàn)隨機(jī)從中抽取2人上臺(tái)抽獎(jiǎng).求a和b至少有一人上臺(tái)抽獎(jiǎng)的概率;
(3)抽獎(jiǎng)活動(dòng)的規(guī)則是:代表通過操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該代表中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求該代表中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在直角梯形中,
,且
.現(xiàn)以
為一邊向形外作正方形
,然后沿邊
將正方形
翻折,使
平面與平面
垂直,
為
的中點(diǎn),如圖 2.
(1)求證: 平面
;
(2)求證: 平面
;
(3)求點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一正方體的表面展開圖,MN和PB是兩條面對(duì)角線,請(qǐng)?jiān)趫D(2)的正方體中將MN和PB畫出來,并就這個(gè)正方體解決下面問題。
(1)求證:MN∥平面PBD;
(2)求證:平面
;
(3)求PB和平面NMB所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,4),直線l:x﹣2y+1=0.
(1)求過點(diǎn)A且平行于l的直線的方程;
(2)若點(diǎn)M在直線l上,且AM⊥l,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)十九大報(bào)告提出的實(shí)施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營(yíng)中,第一年支出
萬元,以后每年的支出比上一年增加了
萬元,從第一年起每年農(nóng)場(chǎng)品銷售收入為
萬元(前
年的純利潤(rùn)綜合=前
年的 總收入-前
年的總支出-投資額
萬元).
(1)該廠從第幾年開始盈利?
(2)該廠第幾年年平均純利潤(rùn)達(dá)到最大?并求出年平均純利潤(rùn)的最大值.
【答案】(1) 從第 開始盈利(2) 該廠第
年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為
萬元
【解析】試題分析:(1)根據(jù)公式得到,令函數(shù)值大于0解得參數(shù)范圍;(2)根據(jù)公式得到
,由均值不等式得到函數(shù)最值.
解析:
由題意可知前 年的純利潤(rùn)總和
(1)由 ,即
,解得
由 知,從第
開始盈利.
(2)年平均純利潤(rùn)
因?yàn)?/span> ,即
所以
當(dāng)且僅當(dāng) ,即
時(shí)等號(hào)成立.
年平均純利潤(rùn)最大值為 萬元,
故該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為
萬元.
【題型】解答題
【結(jié)束】
21
【題目】已知數(shù)列 的前
項(xiàng)和為
,并且滿足
,
.
(1)求數(shù)列 通項(xiàng)公式;
(2)設(shè) 為數(shù)列
的前
項(xiàng)和,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子中裝有4個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4.
(1)從盒子中不放回隨機(jī)抽取兩個(gè)球,求取出的球的編號(hào)之和不大于4的概率;
(2)先從盒子中隨機(jī)取一個(gè)球,該球的編號(hào)為,將球放回盒子中,然后再從盒子中隨機(jī)取一個(gè)球,該球的編號(hào)為
,求
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于無窮數(shù)列{ }與{
},記A={
|
=
,
},B={
|
=
,
},若同時(shí)滿足條件:①{
},{
}均單調(diào)遞增;②
且
,則稱{
}與{
}是無窮互補(bǔ)數(shù)列.
(1)若 =
,
=
,判斷{
}與{
}是否為無窮互補(bǔ)數(shù)列,并說明理由;
(2)若 =
且{
}與{
}是無窮互補(bǔ)數(shù)列,求數(shù)列{
}的前16項(xiàng)的和;
(3)若{ }與{
}是無窮互補(bǔ)數(shù)列,{
}為等差數(shù)列且
=36,求{
}與{
}得通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個(gè)數(shù)是( )
①命題“x0∈R,x02+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax﹣sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量 與
的夾角是鈍角”的充分必要條件是“
<0”.
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com