【題目】改革開放以來,中國快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的
萬件提升到2018年的
億件,快遞行業(yè)的發(fā)展也給我們的生活帶來了很大便利.已知某市某快遞點的收費標(biāo)準(zhǔn)為:首重(重量小于等于
)收費
元,續(xù)重
元
(不足
按
算). (如:一個包裹重量為
則需支付首付
元,續(xù)重
元,一共
元快遞費用)
(1)若你有三件禮物重量分別為
,要將三個禮物分成兩個包裹寄出(如:
合為一個包裹,
一個包裹),那么如何分配禮物,使得你花費的快遞費最少?
(2)為了解該快遞點2019年的攬件情況,在2019年內(nèi)隨機抽查了天的日攬收包裹數(shù)(單位:件),得到如下表格:
包裹數(shù)(單位:件) | ||||
天數(shù)(天) |
現(xiàn)用這天的日攬收包裹數(shù)估計該快遞點2019年的日攬收包裏數(shù).若從2019年任取
天,記這
天中日攬收包裹數(shù)超過
件的天數(shù)為隨機變量
求
的分布列和期望
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究因子對某物種繁殖的影響,某生物研究所開展了系列研究,研究過程中,選取了生長狀況相同的三組樣本分別標(biāo)記為
組,
組,
組進行繁殖實驗,已知每組均繁殖10個個體,其中
組正常培養(yǎng),
組,
組均在食物中添加
因子,一個月后統(tǒng)計存活率,已知
組存活7個個體,
組存活8個個體,
組存活5個個體,現(xiàn)將這20個存活個體集中,并從中任取3個個體
(1)求抽取的3個存活個體中有來自同一組的概率
(2)記為所抽取的3個個體中來自
組的個體的數(shù)量,求
的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,
年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知
年的就醫(yī)費用比
年的就醫(yī)費用增加了
元,則該人
年的儲畜費用為( )
A.元B.
元C.
元D.
元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)判斷并說明函數(shù)的零點個數(shù).若函數(shù)
所有零點均在區(qū)間
內(nèi),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓臺的軸截面為等腰梯形
,
圓臺
的側(cè)面積為
.若點
分別為圓
上的動點,且點
在平面
的同側(cè).
(1)求證:;
(2)若,則當(dāng)三棱錐
的體積取最大值時,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線
的頂點,
,
是
上的兩個動點,且
.
(1)判斷點是否在直線
上?說明理由;
(2)設(shè)點是△
的外接圓的圓心,求點
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體的底面為直角梯形,四邊形
為矩形,且
,
,
,
,
,
,
分別為
,
,
的中點.
(1)求證:平面
;
(2)求直線與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,橢圓C:(
)的離心率為
,左、右焦點分別為
,
,橢圓C過點
,T為直線
上的動點,過點T作橢圓C的切線
,
,A,B為切點.
(1)求證:A,,B三點共線;
(2)過點作一條直線與曲線C交于P,Q兩點.過P,Q作直線
的垂線,垂足依次為M,N.求證:直線
與
交于定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com