科目: 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取名工人,將他們隨機(jī)分成兩組,每組
人.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:
)繪制了如圖所示的莖葉圖(莖為十位數(shù),葉為個(gè)位數(shù)):
(1)根據(jù)莖葉圖,估計(jì)兩種生產(chǎn)方式完成任務(wù)所需時(shí)間至少分鐘的概率,并對(duì)比兩種生產(chǎn)方式所求概率,判斷哪種生產(chǎn)方式的效率更高?
(2)將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過
的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:
查看答案和解析>>
科目: 來源: 題型:
【題目】已知向量a與b滿足:|a|=4,|b|=3,(2a-3b)·(2a+b)=61,
(1) 求向量a與b的夾角θ;
(2) 求|a+b|;
(3) 若,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份
之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求
關(guān)于
的線性回歸方程
,并預(yù)測6月份該商場空調(diào)的銷售量;
(2)若該商場的營銷部對(duì)空調(diào)進(jìn)行新一輪促銷,對(duì)7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地?cái)M購買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
有購買意愿對(duì)應(yīng)的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中
,
.
查看答案和解析>>
科目: 來源: 題型:
【題目】中國鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國鐵路營業(yè)里程達(dá)到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是( )
A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營里程增加最顯著
B.從2014年到2018年這5年,高鐵運(yùn)營里程與年價(jià)正相關(guān)
C.2018年高鐵運(yùn)營里程比2014年高鐵運(yùn)營里程增長80%以上
D.從2014年到2018年這5年,高鐵運(yùn)營里程數(shù)依次成等差數(shù)列
查看答案和解析>>
科目: 來源: 題型:
【題目】某人某天的工作是駕車從地出發(fā),到
兩地辦事,最后返回
地,
,三地之間各路段行駛時(shí)間及擁堵概率如下表
路段 | 正常行駛所用時(shí)間(小時(shí)) | 上午擁堵概率 | 下午擁堵概率 |
1 | 0.3 | 0.6 | |
2 | 0.2 | 0.7 | |
3 | 0.3 | 0.9 |
若在某路段遇到擁堵,則在該路段行駛時(shí)間需要延長1小時(shí).
現(xiàn)有如下兩個(gè)方案:
方案甲:上午從地出發(fā)到
地辦事然后到達(dá)
地,下午從
地辦事后返回
地;
方案乙:上午從地出發(fā)到
地出發(fā)到達(dá)
地,辦完事后返回
地.
(1)若此人早上8點(diǎn)從地出發(fā),在各地辦事及午餐的累積時(shí)間為2小時(shí),且采用方案甲,求他當(dāng)日18點(diǎn)或18點(diǎn)之前能返回
地的概率.
(2)甲乙兩個(gè)方案中,哪個(gè)方案有利于辦完事后更早返回地?請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為
點(diǎn)
是橢圓上任意一點(diǎn),且
的最大值為4,橢圓
的離心率與雙曲線
的離心率互為倒數(shù).
(1)求橢圓方程;
(2)設(shè)點(diǎn),過點(diǎn)
作直線
與圓
相切且分別交橢圓于
,求直線
的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面多邊形中,四邊形
是邊長為2的正方形,四邊形
為等腰梯形,
為
的中點(diǎn),
,現(xiàn)將梯形
沿
折疊,使平面
平面
.
(1)求證:面
;
(2)求與平面
成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),其中
為常數(shù).
(1)若,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間
上為單調(diào)遞減函數(shù),求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) (a為常數(shù))有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com