題目列表(包括答案和解析)
若角α的終邊與直線y=3x重合,且sin α<0,又P(m,n)是α終邊上一點(diǎn),且|OP|=,
則m-n等于( )
A.2 B.-2
C.4 D.-4
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=
-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數(shù)列,q=.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=+
+…+
<
+
+…+
==1-
<1(n∈N*).
A
[解析] ∵a=,x>0時(shí),x+
≥2
=1,等號(hào)在x=
時(shí)成立,又a=4時(shí),x+
=x+
≥2
=4也滿足x+
≥1,故選A.
已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對(duì)任意
,
.
1.選修4-1:幾何證明選講
如圖,的角平分線
的延長線交它的外接圓于點(diǎn)
(Ⅰ)證明:∽△
;
(Ⅱ)若的面積
,求
的大小.
證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.
因?yàn)椤?i>AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因?yàn)椤?i>ABE∽△ADC,所以,即AB·AC=AD·AE.
又S=AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.
x2-2x |
x2-5x+4 |
2 |
π |
2 |
π |
2 |
∫ | 1 0 |
1-x2 |
OA |
OB |
OP |
OA |
OB |
PA |
PB |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com