題目列表(包括答案和解析)
函數(shù)是定義在
上的奇函數(shù),且
。
(1)求實數(shù)a,b,并確定函數(shù)的解析式;
(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出的單調(diào)減區(qū)間,并判斷
有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運用。第一問中,利用函數(shù)是定義在
上的奇函數(shù),且
。
解得,
(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。
(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時,
,當(dāng)x=1時,
解:(1)是奇函數(shù),
。
即,
,
………………2分
,又
,
,
,
(2)任取,且
,
,………………6分
,
,
,
,
,
在(-1,1)上是增函數(shù)。…………………………………………8分
(3)單調(diào)減區(qū)間為…………………………………………10分
當(dāng),x=-1時,,當(dāng)x=1時,
。
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時,求函數(shù)在區(qū)間
上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到.
.
令,則
,所以
或
,得到結(jié)論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數(shù)討論的得到最值。
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
①當(dāng),即
時,
在區(qū)間上,
在
上為減函數(shù),在
上為增函數(shù).
所以. ………………………10分
②當(dāng),即
時,
在區(qū)間
上為減函數(shù).
所以.
綜上所述,當(dāng)時,
;
當(dāng)時,
已知等比數(shù)列中,
,且
,公比
,(1)求
;(2)設(shè)
,求數(shù)列
的前
項和
【解析】第一問,因為由題設(shè)可知
又 故
或
,又由題設(shè)
從而
第二問中,
當(dāng)時,
,
時
故時,
時,
分別討論得到結(jié)論。
由題設(shè)可知
又 故
或
,又由題設(shè)
從而……………………4分
(2)
當(dāng)時,
,
時
……………………6分
故時,
……8分
時,
……………………10分
綜上可得
已知冪函數(shù)滿足
。
(1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;
(2)對于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù)
,在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運用。第一問中利用,冪函數(shù)滿足
,得到
因為,所以k=0,或k=1,故解析式為
(2)由(1)知,,
,因此拋物線開口向下,對稱軸方程為:
,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到
(1)對于冪函數(shù)滿足
,
因此,解得
,………………3分
因為,所以k=0,或k=1,當(dāng)k=0時,
,
當(dāng)k=1時,,綜上所述,k的值為0或1,
!6分
(2)函數(shù),………………7分
由此要求,因此拋物線開口向下,對稱軸方程為:
,
當(dāng)時,
,因為在區(qū)間
上的最大值為5,
所以,或
…………………………………………10分
解得滿足題意
P()是平面上的一個點,設(shè)事件A表示“
”,其中
為實常數(shù).
(1)若均為從0,1,2,3,4五個數(shù)中任取的一個數(shù),求事件A發(fā)生的概率;
(2)若均為從區(qū)間[0,5)任取的一個數(shù),求事件A發(fā)生的概率.
【解析】本試題考查了幾何概型和古典概型結(jié)合的一道綜合概率計算試題。首先明確區(qū)域中的所有基本事件數(shù)或者區(qū)域表示的面積,然后分別結(jié)合概率公式求解得到。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com