題目列表(包括答案和解析)
已知命題及其證明:
(1)當(dāng)時(shí),左邊=1,右邊=
所以等式成立;
(2)假設(shè)時(shí)等式成立,即
成立,
則當(dāng)時(shí),
,所以
時(shí)等式也成立。
由(1)(2)知,對(duì)任意的正整數(shù)n等式都成立。
經(jīng)判斷以上評(píng)述
A.命題、推理都正確 B命題不正確、推理正確
C.命題正確、推理不正確 D命題、推理都不正確
教材中是用“AB且B
A,則A=B”來(lái)定義的,實(shí)際上也可以說(shuō)當(dāng)集合A與B的元素完全相同時(shí),則A________B.教材中的定義實(shí)際上給出了一種證明兩個(gè)集合相等的方法,即欲證A=B,只需證AB與BA都成立即可.
已知函數(shù).(
)
(1)若在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若在區(qū)間上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.然后求解得到。
解:(1)在區(qū)間
上單調(diào)遞增,
則在區(qū)間
上恒成立. …………3分
即,而當(dāng)
時(shí),
,故
.
…………5分
所以.
…………6分
(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.
∵ …………9分
① 若,令
,得極值點(diǎn)
,
,
當(dāng),即
時(shí),在(
,+∞)上有
,此時(shí)
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng),即
時(shí),同理可知,
在區(qū)間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時(shí)在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當(dāng)時(shí),函數(shù)
的圖象恒在直線
下方.
已知,(其中
)
⑴求及
;
⑵試比較與
的大小,并說(shuō)明理由.
【解析】第一問中取,則
;
…………1分
對(duì)等式兩邊求導(dǎo),得
取,則
得到結(jié)論
第二問中,要比較與
的大小,即比較:
與
的大小,歸納猜想可得結(jié)論當(dāng)
時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
;
猜想:當(dāng)時(shí),
運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取,則
;
…………1分
對(duì)等式兩邊求導(dǎo),得,
取,則
。 …………4分
⑵要比較與
的大小,即比較:
與
的大小,
當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
;
…………6分
猜想:當(dāng)時(shí),
,下面用數(shù)學(xué)歸納法證明:
由上述過(guò)程可知,時(shí)結(jié)論成立,
假設(shè)當(dāng)時(shí)結(jié)論成立,即
,
當(dāng)時(shí),
而
∴
即時(shí)結(jié)論也成立,
∴當(dāng)時(shí),
成立。
…………11分
綜上得,當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
已知數(shù)列的前
項(xiàng)和為
,且
(
N*),其中
.
(Ⅰ) 求的通項(xiàng)公式;
(Ⅱ) 設(shè) (
N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時(shí),由
得
. ……2分
若存在由
得
,
從而有,與
矛盾,所以
.
從而由得
得
. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一.
……10分
證法三:(利用對(duì)偶式)設(shè),
,
則.又
,也即
,所以
,也即
,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí),
,命題成立;
②假設(shè)時(shí),命題成立,即
,
則當(dāng)時(shí),
即
即
故當(dāng)時(shí),命題成立.
綜上可知,對(duì)一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com