中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

(2) 設(shè)與軸交點為.求證: 查看更多

 

題目列表(包括答案和解析)

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于兩點。

(I)求曲線的方程;

(II)試證明:在軸上存在定點,使得總能被軸平分

【解析】第一問中設(shè)為曲線上的任意一點,則點在圓上,

,曲線的方程為

第二問中,設(shè)點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個公共點.

然后設(shè)點,的坐標分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點,則點在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴

∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點,的坐標分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,,

,即只要  ………………12分  

時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點,使得總能被軸平分

 

查看答案和解析>>

  設(shè)拋物線的準線與軸交點為,過點 作直線交拋物線與不同的點兩點.

(1)求線段中點的軌跡方程;

(2)若線段的垂直平分線交拋物線對稱軸與,求證:.

查看答案和解析>>

 設(shè)拋物線的準線與軸交點為,過點 作直線交拋物線與不同的點兩點.
(1)求線段中點的軌跡方程;
(2)若線段的垂直平分線交拋物線對稱軸與,求證:.

查看答案和解析>>

已知定點與分別在軸、軸上的動點滿足:,動點滿足
(1)求動點的軌跡的方程;
(2)設(shè)過點任作一直線與點的軌跡交于兩點,直線與直線分別交于點為坐標原點);
(i)試判斷直線與以為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.

查看答案和解析>>

已知定點與分別在軸、軸上的動點滿足:,動點滿足
(1)求動點的軌跡的方程;
(2)設(shè)過點任作一直線與點的軌跡交于兩點,直線與直線分別交于點為坐標原點);
(i)試判斷直線與以為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.

查看答案和解析>>

         天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長  么世濤

一、選擇題 :1-4, BBBB ;5-8,DABD。

提示:1.

2.

3.用代替

4.

5.,

6.

7.略

8.     

二、填空題:9.60;  10. 15:10:20   ;  11.;  12.;

13.0.74  ; 14. ①、;②、圓;③.

提示: 9.

10.,

11.,

12.,,,

,

13.

14.略

 

三、解答題

15. 解:(1).    

  (2)設(shè)抽取件產(chǎn)品作檢驗,則,  

    ,得:,即

   故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.  

16. 解:由題意得,原式可化為,

   

故原式=.

17. 解:(1)顯然,連接,∵,

.由已知,∴,.

 ∵,

.

 ∴.        

 (2)     

當且僅當時,等號成立.此時,即的中點.于是由,知平面是其交線,則過

。

 ∴就是與平面所成的角.由已知得,

 ∴, .      

(3) 設(shè)三棱錐的內(nèi)切球半徑為,則

,,

 ∴.     

18. (1) ,   

(2) ∵ ,

∴當時,      

∴當時,,  

,,,.

的最大值為中的最大者.

∴ 當時,有最大值為

19.(1)解:∵函數(shù)的圖象過原點,

,

.      

又函數(shù)的圖象關(guān)于點成中心對稱,

.

(2)解:由題意有  即,

 即,即.

 ∴數(shù)列{}是以1為首項,1為公差的等差數(shù)列.

 ∴,即. ∴.

  ∴ ,,,

(3)證明:當時,   

 故       

20. (1)解:∵,又

    ∴.             又∵     

    ,且

.        

(2)解:由,猜想

    (3)證明:用數(shù)學(xué)歸納法證明:

    ①當時,,猜想正確;

    ②假設(shè)時,猜想正確,即

1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),

   

   2°若為正偶數(shù),則為正整數(shù),

,又,且

所以

即當時,猜想也正確          

   

由①,②可知,成立.     

(二)

一、1-4,AABB,5-8,CDCB;

提示: 1.  即   

2.   即

3.   即,也就是 ,

4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:

      <center id="y434q"></center>

        人的編號

        1

        2

        3

        4

        5

        座位號

        1

        2

        5

        3

        4

         

        人的編號

        1

        2

        3

        4

        5

        座位號

        1

        2

        4

        5

        3

         

                                                         

         

         

        所以,符合條件的共有10×2=20種。

        5. ,又,所以

        ,且,所以

        6.略

        7.略

        8. 密文shxc中的s對應(yīng)的數(shù)字為19,按照變換公式:

        ,原文對應(yīng)的數(shù)字是12,對應(yīng)的字母是

        密文shxc中的h對應(yīng)的數(shù)字為8,按照變換公式:

        ,原文對應(yīng)的數(shù)字是15,對應(yīng)的字母是;

        二、9.; 10.2;11.-48; 12. ; 13、5; 14、①3,②,③

        提示:

        9.  ,

        10. 數(shù)列是首相為,公差為的等差數(shù)列,于是

          又,所以

        11. 特殊值法。取通徑,則,

        。

        12.因,,所以同解于

        所以

        13.略 。

         

        14、(1)如圖:∵

        ∴∠1=∠2=∠3=∠P+∠PFD          

        =∠FEO+∠EFO

        ∴∠FEO=∠P,可證△OEF∽△DPF

        即有,又根據(jù)相交弦定理DF?EF=BF?AF

        可推出,從而

        ∴PF=3

        (2) ∵PFQF,  ∴  ∴

        (3)略。

        三、15.解:(1)  依題知,得  

        文本框: 子曰:三人行,必有我?guī)熝桑簱衿渖普叨鴱闹,其不善者而改之。精通?nèi)部學(xué)員使用么老師答疑電話
13702071025
 所以

        (2) 由(1)得

            

        ∴            

        的值域為。

         

        16.解:設(shè)飛機A能安全飛行的概率為,飛機B能安全飛行的概率為,則

          所以

        時,,,;

        時,,,;

        時,,,;

        故當時,飛機A安全;當時,飛機A與飛機B一樣安全;當時,飛機B安全。

         

        17.(1) 證明:以D為坐標原點,DA所在的直線x

        軸,建立空間直角坐標系如圖。

        設(shè),則

        ,,,

        ,

        ,所以

                            即  ,也就是

        ,所以 ,即

        (2)解:方法1、找出二面角,再計算。

         

        方法2、由(1)得:(當且僅當取等號)

        分別為的中點,于是 ,。

        ,所以 ,

        設(shè)是平面的一個法向量,則

          也就是

        易知是平面的一個法向量,

                           

        18.(1) 證明:依題知得:

        整理,得

         所以   即 

        故 數(shù)列是等差數(shù)列。

        (2) 由(1)得   即 ()

          所以

         =

        =

         

        19.解:(1) 依題知得

        欲使函數(shù)是增函數(shù),僅須

        同步練習(xí)冊答案