中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

2.已知向量的 A.充分而不必要條件 B.必要而不充分條件 C.充要條件 D.既不充分也不必要條件 查看更多

 

題目列表(包括答案和解析)

已知向量
a
=(x,y),
b
=(cosα,sinα),其中x,y,α∈R,若|
a
|=4|
b
|,則
a
b
λ2
成立的一個(gè)必要而不充分條件是( 。

查看答案和解析>>

已知向量
a
=(x,y),
b
=(cosα,sinα),其中x,y,α∈R,若|
a
|=4|
b
|,則
a
b
λ2
成立的一個(gè)必要而不充分條件是( 。
A.-3<λ<3B.-1<λ<1C.λ>3或λ<-3D.λ>1或λ<-1

查看答案和解析>>

已知向量=(x,y),=(cosα,sinα),其中x,y,α∈R,若|,則成立的一個(gè)必要而不充分條件是( )
A.-3<λ<3
B.-1<λ<1
C.λ>3或λ<-3
D.λ>1或λ<-1

查看答案和解析>>

已知非零向量”是“”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

已知向量=(x,1),=(-x,4),其中x∈R.則“x=2”是“”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分又不必要條件

查看答案和解析>>

 

一、選擇:

1―5AADBA  6―10DCBCB  11―12DA

二、填空

13.2   14.(1)(3)  15.

16.4  17.14  18.

三、解答:

19.解:(1)

      

   (2)

      

      

20.證明:(1)由三視圖可知,平面平面ABCD,

       設(shè)BC中點(diǎn)為E,連結(jié)AE、PE

      

      

       ,PB=PC

      

      

      

    //

    //

  • <blockquote id="0i6af"></blockquote>

      • <tr id="0i6af"><menuitem id="0i6af"></menuitem></tr>

        //

              

        四邊形CHFD為平行四邊形,CH//DF

              

               又

               平面PBC

              

               ,DF平面PAD

               平面PAB

        21.解:設(shè)

              

              

               對(duì)成立,

               依題有成立

               由于成立

                  ①

               由于成立

                 

               恒成立

                  ②

               綜上由①、②得

         

         

        22.解:設(shè)列車從各站出發(fā)時(shí)郵政車廂內(nèi)的郵袋數(shù)構(gòu)成數(shù)列

           (1)

               在第k站出發(fā)時(shí),前面放上的郵袋個(gè)

               而從第二站起,每站放下的郵袋個(gè)

               故

              

               即從第k站出發(fā)時(shí),共有郵袋

           (2)

               當(dāng)n為偶數(shù)時(shí),

               當(dāng)n為奇數(shù)時(shí),

        23.解:①

               上為增函數(shù)

               ②增函數(shù)

              

              

              

              

              

               同理可證

              

              

        24.解:(1)假設(shè)存在滿足題意

               則

              

               均成立

              

              

               成立

               滿足題意

           (2)

              

              

              

              

               當(dāng)n=1時(shí),

              

               成立

               假設(shè)成立

               成立

               則

              

              

              

              

              

              

              

              

              

              

               即得成立

               綜上,由數(shù)學(xué)歸納法可知