中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

(1)若x為任意實數(shù).求的最小正周期, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

向量

(1)若a為任意實數(shù),求g(x)的最小正周期;

(2)若g(x)在[o,)上的最大值與最小值之和為7,求a的值,

 

查看答案和解析>>

(本小題滿分12分)
向量
(1)若a為任意實數(shù),求g(x)的最小正周期;
(2)若g(x)在[o,)上的最大值與最小值之和為7,求a的值,

查看答案和解析>>

(本小題滿分12分)
向量
(1)若a為任意實數(shù),求g(x)的最小正周期;
(2)若g(x)在[o,)上的最大值與最小值之和為7,求a的值,

查看答案和解析>>

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)的圖象與x軸交點為(-
π
6
,0),與此交點距離最小的最高點坐標(biāo)為(
π
12
,1).
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若函數(shù)f(x)滿足方程f(x)=a(-1<a<0),求在[0,2π]內(nèi)的所有實數(shù)根之和;
(Ⅲ)把函數(shù)y=f(x)的圖象的周期擴大為原來的兩倍,然后向右平移
3
個單位,再把縱坐標(biāo)伸長為原來的兩倍,最后向上平移一個單位得到函數(shù)y=g(x)的圖象.若對任意的0≤m≤3,方程|g(kx)|=m在區(qū)間[0,
6
]上至多有一個解,求正數(shù)k的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)的圖象與x軸交點為(-,0),與此交點距離最小的最高點坐標(biāo)為(,1).
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若函數(shù)f(x)滿足方程f(x)=a(-1<a<0),求在[0,2π]內(nèi)的所有實數(shù)根之和;
(Ⅲ)把函數(shù)y=f(x)的圖象的周期擴大為原來的兩倍,然后向右平移個單位,再把縱坐標(biāo)伸長為原來的兩倍,最后向上平移一個單位得到函數(shù)y=g(x)的圖象.若對任意的0≤m≤3,方程|g(kx)|=m在區(qū)間[0,]上至多有一個解,求正數(shù)k的取值范圍.

查看答案和解析>>

 

一、選擇:

1―5AADBA  6―10DCBCB  11―12DA

二、填空

13.2   14.(1)(3)  15.

16.4  17.14  18.

三、解答:

19.解:(1)

      

   (2)

      

      

20.證明:(1)由三視圖可知,平面平面ABCD,

       設(shè)BC中點為E,連結(jié)AE、PE

      

      

       ,PB=PC

      

      

      

//

//

//

      

四邊形CHFD為平行四邊形,CH//DF

      

       又

       平面PBC

      

       ,DF平面PAD

       平面PAB

21.解:設(shè)

      

      

       對成立,

       依題有成立

       由于成立

          ①

       由于成立

         

       恒成立

          ②

       綜上由①、②得

 

 

22.解:設(shè)列車從各站出發(fā)時郵政車廂內(nèi)的郵袋數(shù)構(gòu)成數(shù)列

   (1)

       在第k站出發(fā)時,前面放上的郵袋

       而從第二站起,每站放下的郵袋

       故

      

       即從第k站出發(fā)時,共有郵袋

   (2)

       當(dāng)n為偶數(shù)時,

       當(dāng)n為奇數(shù)時,

23.解:①

       上為增函數(shù)

       ②增函數(shù)

      

      

      

      

      

       同理可證

      

      

24.解:(1)假設(shè)存在滿足題意

       則

      

       均成立

      

      

       成立

       滿足題意

   (2)

      

      

      

      

       當(dāng)n=1時,

      

       成立

       假設(shè)成立

       成立

       則

      

      

      

      

      

      

      

      

      

      

       即得成立

       綜上,由數(shù)學(xué)歸納法可知