題目列表(包括答案和解析)
已知,設(shè)
和
是方程
的兩個(gè)根,不等式
對(duì)任意實(shí)數(shù)
恒成立;
函數(shù)
有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)
的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==
.
當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),
的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==
.
當(dāng)a∈[1,2]時(shí),的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即
解得實(shí)數(shù)m的取值范圍是(4,8]
已知函數(shù),
.
(Ⅰ)若函數(shù)和函數(shù)
在區(qū)間
上均為增函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅱ)若方程有唯一解,求實(shí)數(shù)
的值.
【解析】第一問,
當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),
,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須
,即
由上得出,當(dāng)時(shí)
,
在
上均為增函數(shù)
(Ⅱ)中方程有唯一解
有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|
|
|
|
- |
|
+ |
|
|
極小值 |
|
由于在上,
只有一個(gè)極小值,
的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程有唯一解得到結(jié)論。
(Ⅰ)解:
當(dāng)0<x<2時(shí),,當(dāng)x>2時(shí),
,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須
,即
由上得出,當(dāng)時(shí)
,
在
上均為增函數(shù) ……………6分
(Ⅱ)方程有唯一解
有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|
|
|
|
- |
|
+ |
|
|
極小值 |
|
由于在上,
只有一個(gè)極小值,
的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時(shí),方程有唯一解
已知,函數(shù)
(1)當(dāng)時(shí),求函數(shù)
在點(diǎn)(1,
)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使
>g(xo)成立,求正實(shí)數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)
時(shí),
又
所以函數(shù)
在點(diǎn)(1,
)的切線方程為
;(2)中令
有
對(duì)a分類討論,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時(shí),
又
∴ 函數(shù)在點(diǎn)(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當(dāng)即
時(shí)
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當(dāng)即
時(shí),
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時(shí),極大值為
,無極小值
時(shí) 極大值是
,極小值是
----------8分
(Ⅲ)設(shè),
對(duì)求導(dǎo),得
∵,
∴ 在區(qū)間
上為增函數(shù),則
依題意,只需,即
解得 或
(舍去)
則正實(shí)數(shù)的取值范圍是(
,
)
已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線的斜率是
.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間
上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說明理由.
【解析】第一問當(dāng)時(shí),
,則
。
依題意得:,即
解得
第二問當(dāng)時(shí),
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè),則
,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)時(shí),
,則
。
依題意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時(shí),
,令
得
當(dāng)變化時(shí),
的變化情況如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又,
,
!
在
上的最大值為2.
②當(dāng)時(shí),
.當(dāng)
時(shí),
,
最大值為0;
當(dāng)時(shí),
在
上單調(diào)遞增!
在
最大值為
。
綜上,當(dāng)時(shí),即
時(shí),
在區(qū)間
上的最大值為2;
當(dāng)時(shí),即
時(shí),
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè),則
,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若,則
代入(*)式得:
即,而此方程無解,因此
。此時(shí)
,
代入(*)式得: 即
(**)
令
,則
∴在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對(duì)于,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù),曲線
上存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com