題目列表(包括答案和解析)
x |
10 |
剎車(chē)時(shí)車(chē)速v/km/h | 10 | 15 | 30 | 50 | 60 | 80 | |
剎車(chē)距離s/m | 1.1 | 2.1 | 6.9 | 17.5 | 24.8 | 42.5 |
行駛中的汽車(chē),在剎車(chē)后由于慣性的作用,要繼續(xù)向前滑行一段距離后才會(huì)停下,這段距離叫剎車(chē)距離。為測(cè)定某種型號(hào)汽車(chē)的剎車(chē)性能,對(duì)這種型號(hào)的汽車(chē)在國(guó)道公路上進(jìn)行測(cè)試,測(cè)試所得數(shù)據(jù)如下表。根據(jù)表中的數(shù)據(jù)作散點(diǎn)圖,模擬函數(shù)可以選用二次函數(shù)或函數(shù)(其中
為常數(shù)).某人用(0,0),(10,1.1),(30,6.9)求出相關(guān)系數(shù),用(60,24.8)驗(yàn)證,請(qǐng)問(wèn)用以上哪個(gè)函數(shù)作為模擬函數(shù)較好,并說(shuō)明理由.在一次由這種型號(hào)的汽車(chē)發(fā)生的交通事故中,測(cè)得剎車(chē)距離為14.4m,問(wèn)汽車(chē)在剎車(chē)時(shí)的速度大概是多少?
(其中用函數(shù)擬合,經(jīng)運(yùn)算得到函數(shù)式為
,且
)
剎車(chē)時(shí)車(chē)速v/km/h |
10 |
15 |
30 |
50 |
60 |
80 |
|||
剎車(chē)距離s/m |
1.1 |
2.1 |
6.9 |
17.5 |
24.8 |
42.5 |
|
||
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,
于是
,所以
(2) ,
設(shè)平面PCD的法向量
,
則,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)證明:由,可得
,又由
,
,故
.又
,所以
.
(2)如圖,作于點(diǎn)H,連接DH.由
,
,可得
.
因此,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值為
.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對(duì)任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)利用在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
第三問(wèn),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時(shí),數(shù)列中的
成等比數(shù)列
某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查.瞬時(shí)記憶能力包括聽(tīng)覺(jué)記憶能力與視覺(jué)記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽(tīng)覺(jué)記憶能力為中等,且視覺(jué)記憶能力偏高的學(xué)生為3人.
|
視覺(jué)記憶能力 |
||||
偏低 |
中等 |
偏高 |
超常 |
||
聽(tīng)覺(jué) 記憶 能力 |
偏低 |
0 |
7 |
5 |
1 |
中等 |
1 |
8 |
3 |
|
|
偏高 |
2 |
|
0 |
1 |
|
超常 |
0 |
2 |
1 |
1 |
由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺(jué)記憶能力恰為中等,且聽(tīng)覺(jué)記憶能力為中等或中等以上的概率為.
(I)試確定、
的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量
的數(shù)學(xué)期望
.
【解析】1)中由表格數(shù)據(jù)可知,視覺(jué)記憶能力恰為中等,且聽(tīng)覺(jué)記憶能力為中等或中等以上的學(xué)生共有(10+a)人.記“視覺(jué)記憶能力恰為中等,且聽(tīng)覺(jué)記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分
所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分
(2)中由表格數(shù)據(jù)可知,具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生共有8人.
方法1:記“至少有一位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生”為事件B,
則“沒(méi)有一位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力超常的學(xué)生”為事件
(3)中由于從40位學(xué)生中任意抽取3位的結(jié)果數(shù)為,其中具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的學(xué)生共24人,從40位學(xué)生中任意抽取3位,其中恰有k位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的結(jié)果數(shù)為
,………………………7分
所以從40位學(xué)生中任意抽取3位,其中恰有k位具有聽(tīng)覺(jué)記憶能力或視覺(jué)記憶能力偏高或超常的概率為,k=0,1,2,3
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com