題目列表(包括答案和解析)
已知,
求 和
的值.
【解析】利用三角恒等變換得到函數(shù)值,
由于
得
解析: 由
得
已知在中,
,
,
,解這個(gè)三角形;
【解析】本試題主要考查了正弦定理的運(yùn)用。由正弦定理得到:,然后又
又再又
得到c。
解:由正弦定理得到:
又
……4分
又 ……8分
又
求由拋物線與直線
及
所圍成圖形的面積.
【解析】首先利用已知函數(shù)和拋物線作圖,然后確定交點(diǎn)坐標(biāo),然后利用定積分表示出面積為,所以得到
,由此得到結(jié)論為
解:設(shè)所求圖形面積為,則
=
.即所求圖形面積為
.
已知指數(shù)函數(shù),當(dāng)
時(shí),有
,解關(guān)于x的不等式
【解析】本試題主要考查了指數(shù)函數(shù),對(duì)數(shù)函數(shù)性質(zhì)的運(yùn)用。首先利用指數(shù)函數(shù),當(dāng)
時(shí),有
,,得到
,從而
等價(jià)于
,聯(lián)立不等式組可以解得
解:∵ 在
時(shí),有
,
∴
。
于是由,得
,
解得,
∴ 不等式的解集為
。
已知,(其中
)
⑴求及
;
⑵試比較與
的大小,并說明理由.
【解析】第一問中取,則
;
…………1分
對(duì)等式兩邊求導(dǎo),得
取,則
得到結(jié)論
第二問中,要比較與
的大小,即比較:
與
的大小,歸納猜想可得結(jié)論當(dāng)
時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
;
猜想:當(dāng)時(shí),
運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取,則
;
…………1分
對(duì)等式兩邊求導(dǎo),得,
取,則
。 …………4分
⑵要比較與
的大小,即比較:
與
的大小,
當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
;
…………6分
猜想:當(dāng)時(shí),
,下面用數(shù)學(xué)歸納法證明:
由上述過程可知,時(shí)結(jié)論成立,
假設(shè)當(dāng)時(shí)結(jié)論成立,即
,
當(dāng)時(shí),
而
∴
即時(shí)結(jié)論也成立,
∴當(dāng)時(shí),
成立。
…………11分
綜上得,當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
1. 構(gòu)造向量,
,所以
,
.由數(shù)量積的性質(zhì)
,得
,即
的最大值為2.
2. ∵,令
得
,所以
,當(dāng)
時(shí),
,當(dāng)
時(shí),
,所以當(dāng)
時(shí),
.
3.∵,∴
,
,又
,∴
,則
,所以周期
.作出
在
上的圖象知:若
,滿足條件的
(
)存在,且
,
關(guān)于直線
對(duì)稱,
,
關(guān)于直線
對(duì)稱,∴
;若
,滿足條件的
(
)存在,且
,
關(guān)于直線
對(duì)稱,
,
關(guān)于直線
對(duì)稱,
∴
.
4. 不等式(
)表示的區(qū)域是如圖所示的菱形的內(nèi)部,
∵,
當(dāng),點(diǎn)
到點(diǎn)
的距離最大,此時(shí)
的最大值為
;
當(dāng),點(diǎn)
到點(diǎn)
的距離最大,此時(shí)
的最大值為3.
5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:
(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;
(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.
于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.
6. ∵
,∴
,
設(shè),
,則
.
作出該不等式組表示的平面區(qū)域(圖中的陰影部分).
令,則
,它表示斜率為
的一組平行直線,易知,當(dāng)它經(jīng)過點(diǎn)
時(shí),
取得最小值.
解方程組,得
,∴
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com