中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

(Ⅰ) 判斷四邊形的形狀.并說明理由, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
2

(1)求異面直線PC與AD所成角的大;
(2)若平面ABCD內(nèi)有一經(jīng)過點(diǎn)C的曲線E,該曲線上的任一動點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動時(shí),試提出一個研究有關(guān)四面P-BMN的問題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
(1)求異面直線PC與AD所成角的大小;
(2)若平面ABCD內(nèi)有一經(jīng)過點(diǎn)C的曲線E,該曲線上的任一動點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動時(shí),試提出一個研究有關(guān)四面P-BMN的問題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.

(Ⅰ)若AC-6,AB=10,求⊙O的半徑;

(Ⅱ)連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.

查看答案和解析>>

選修4-1:幾何證明選講

如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.

(Ⅰ)若AC-6,AB=10,求⊙O的半徑;

(Ⅱ)連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.

查看答案和解析>>

任選一題作答選修:幾何證明選講如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.
(I)若AC=6,AB=10,求⊙O的半徑;
(Ⅱ)連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.

查看答案和解析>>

CBACA;DCADC;DB

30;9,27;1;

17. 解:易得                                            ………… 3分

當(dāng)a=1時(shí), B=,滿足;                           ………… 5分

當(dāng)時(shí),B={x|2a<x<a2+1},要使即BA,

必須,解之得                               ………… 8分

綜上可知,存在這樣的實(shí)數(shù)a滿足題設(shè)成立.       ………… 10分

18. 解: (1) 圖2是由四塊圖1所示地磚繞點(diǎn)按順時(shí)針旋轉(zhuǎn)后得到,△為等腰直角三角形,     四邊形是正方形.                                  …… 4分

(2) 設(shè),則,每塊地磚的費(fèi)用為,制成△、△和四邊形三種材料的每平方米價(jià)格依次為3a2a、a (元),                          …… 6分

       

                                                

    .                                …… 10分

    由,當(dāng)時(shí),有最小值,即總費(fèi)用為最省. 

    答:當(dāng)米時(shí),總費(fèi)用最省.                             …… 12分

 

19. 解:(Ⅰ)易得,的解集為恒成立.解得.………………… 3分

因此的對稱軸, 故函數(shù)在區(qū)間上不單調(diào),從而不存在反函數(shù)。                                                ……………………… 5分

(Ⅱ)由已知可得,則

,

.                          ………………………7分

①     若,則上單調(diào)遞增,在上無極值;

②     若,則當(dāng)時(shí),;當(dāng)時(shí),.

當(dāng)時(shí),有極小值在區(qū)間上存在極小值,.

③     若,則當(dāng)時(shí),;當(dāng)時(shí),.

*當(dāng)時(shí),有極小值.

在區(qū)間上存在極小值 .……………… 10分

綜上所述:當(dāng)時(shí),在區(qū)間上存在極小值。………… 12分

20. 解:(Ⅰ)當(dāng)時(shí),

,即數(shù)列的通項(xiàng)公式為       …… 4分

 (Ⅱ)當(dāng)時(shí),

當(dāng)               

                                …… 8分

由此可知,數(shù)列的前n項(xiàng)和                  …… 12分

21. 解:(Ⅰ).                          …… 4分

(Ⅱ)易得的值域?yàn)锳=,設(shè)函數(shù)的值域B,若對于任意總存在,使得成立,只需。               …… 6分

顯然當(dāng)時(shí),,不合題意;

當(dāng)時(shí),,故應(yīng)有,解之得: ;…… 8分

當(dāng)時(shí),,故應(yīng)有,解之得:! 10分

綜上所述,實(shí)數(shù)的取值范圍為。               …… 12分

22. 解:(Ⅰ).

                                                                …… 3分

  (Ⅱ) …… 6分

  ,

 由錯位相減法得:,

    

所以:。   …… 8分

  (Ⅲ)

為遞增數(shù)列 。

 中最小項(xiàng)為     …… 12分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案