題目列表(包括答案和解析)
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對任意
,
,不等式
恒成立,求實數(shù)
的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問中,若對任意不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對任意不等式
恒成立,
問題等價于,
.........5分
由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當(dāng)b<1時,;
當(dāng)時,
;
當(dāng)b>2時,;
............8分
問題等價于 ........11分
解得b<1 或 或
即
,所以實數(shù)b的取值范圍是
已知函數(shù)其中
為自然對數(shù)的底數(shù),
.(Ⅰ)設(shè)
,求函數(shù)
的最值;(Ⅱ)若對于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當(dāng)時,
,
.結(jié)合表格和導(dǎo)數(shù)的知識判定單調(diào)性和極值,進而得到最值。
第二問中,∵,
,
∴原不等式等價于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當(dāng)時,
,
.
當(dāng)在
上變化時,
,
的變化情況如下表:
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
1/e |
∴時,
,
.
(Ⅱ)∵,
,
∴原不等式等價于:,
即, 亦即
.
∴對于任意的,原不等式恒成立,等價于
對
恒成立,
∵對于任意的時,
(當(dāng)且僅當(dāng)
時取等號).
∴只需,即
,解之得
或
.
因此,的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com