中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

所以.所以若使恒成立.只需. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

于是對一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng)

從而,

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

已知函數(shù);

(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實數(shù)的取值范圍。

(2)若函數(shù),若在[1,e]上至少存在一個x的值使成立,求實數(shù)的取值范圍。

【解析】第一問中,利用導(dǎo)數(shù),因為在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿足恒成立,得到結(jié)論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來解答即可。

解:(1)

因為在其定義域內(nèi)的單調(diào)遞增函數(shù),

所以 內(nèi)滿足恒成立,即恒成立,

亦即,

即可  又

當(dāng)且僅當(dāng),即x=1時取等號,

在其定義域內(nèi)為單調(diào)增函數(shù)的實數(shù)k的取值范圍是.

(2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設(shè)

 上的增函數(shù),依題意需

實數(shù)k的取值范圍是

 

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

第一問中,利用當(dāng)時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當(dāng)時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時,上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時,令,對稱軸,

上單調(diào)遞增,又    

① 當(dāng),即時,上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

(13分)已知數(shù)列滿足:

  (1)求的通項公式;

  (2)數(shù)列滿足:,那么是否存在正整數(shù),使恒成立,若

存在求出的最小值,若不存在請說明理由. 

查看答案和解析>>

(本題滿分14分)

已知函數(shù)(),.

(Ⅰ)當(dāng)時,解關(guān)于的不等式:;

(Ⅱ)當(dāng)時,記,過點是否存在函數(shù)圖象的切線?若存在,有多少條?若不存在,說明理由;

(Ⅲ)若是使恒成立的最小值,對任意,

試比較的大小(常數(shù)).

 

查看答案和解析>>


同步練習(xí)冊答案