題目列表(包括答案和解析)
(本小題滿分12分)
已知拋物線C1:y2=4x的焦點(diǎn)與橢圓C2:的右焦點(diǎn)F2重合,F(xiàn)1是橢圓的左焦點(diǎn);
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點(diǎn)C在拋物線y2=4x上運(yùn)動,求
ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點(diǎn),且∠PF1F2=,∠PF2F1=
,求cos
的值及
PF1F2的面積。
(本小題滿分12分)已知點(diǎn)F是拋物線C:的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=
.
(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動圓與軸分別交于兩點(diǎn)A、B,延長SA、SB分別交拋物線C于M、N兩點(diǎn);
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點(diǎn)E,若|EM|=
|NE|,求cos∠MSN的值.
(本小題滿分12分)
已知橢圓M的中心為坐標(biāo)原點(diǎn),且焦點(diǎn)在x軸上,若M的一個頂點(diǎn)恰好是拋物線的焦點(diǎn),M的離心率
,過M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線
,交M于A,B兩點(diǎn)。
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)N(t,0)是一個動點(diǎn),且,求實(shí)數(shù)t的取值范圍。
(本小題滿分12分)已知橢圓M的中心為坐標(biāo)原點(diǎn) ,且焦點(diǎn)在x軸上,若M的一個頂點(diǎn)恰好是拋物線的焦點(diǎn),M的離心率
,過M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線
,交M于A,B兩點(diǎn)。
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)N(t,0)是一個動點(diǎn),且,求實(shí)數(shù)t的取值范圍。
(本小題滿分12分)已知橢圓E的長軸的一個端點(diǎn)是拋物線的焦點(diǎn),離心率是
(1)求橢圓E的方程;
(2)過點(diǎn)C(—1,0),斜率為k的動直線與橢圓E相交于A、B兩點(diǎn),請問x軸上是否存在點(diǎn)M,使為常數(shù)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
一、BDCBA,BDCDC,BB
二、13. 14.8; 15.; 16. ③④
三、17、
解:(Ⅰ)
……………2分
由題意知對任意實(shí)數(shù)x恒成立,
得,
………………………………………………………6分
(Ⅱ)由(Ⅰ)知
由,解得
所以,的單調(diào)增區(qū)間為……………………12分
18、
解:(Ⅰ)證明取SC的中點(diǎn)R,連QR, DR.。
由題意知:PD∥BC且PD=BC;
QR∥BC且QP=BC,
QR∥PD且QR=PD。
PQ∥PR,又PQ面SCD,PQ∥面SCD. …………6分
(Ⅱ)法一:
…………12分
(Ⅱ)法二:以P為坐標(biāo)原點(diǎn),PA為x軸,PB為y軸,PS為z軸建立空間直角坐標(biāo)系,則S(),B(),C(),Q(),
面PBC的法向量為(),設(shè)為面PQC的法向量,
由
COS
…………12分
19、解
設(shè)A,B兩點(diǎn)的坐標(biāo)為()、()則
(Ⅰ)經(jīng)過A、B兩點(diǎn)的直線方程為
由得:
令得:
從而
(否則,有一個為零向量)
代入(1)得
始終經(jīng)過這個定點(diǎn) …………………(6分)
(Ⅱ)設(shè)AB中點(diǎn)的坐標(biāo)為(),則
又
即
AB的中點(diǎn)到直線的距離d為:
因?yàn)閐的最小值為 ……………(12分)
20、解:(Ⅰ)密碼中不同數(shù)字的個數(shù)為2的事件為密碼中只有兩個數(shù)字,注意到密碼的第1,2列分別總是1,2,即只能取表格第1,2列中的數(shù)字作為密碼.
…………………………………………………………………4分
(Ⅱ)由題意可知,ξ的取值為2,3,4三種情形.
若ξ= 3,注意表格的第一排總含有數(shù)字1,第二排總含有數(shù)字2則密碼中只可能取數(shù)字1,2,3或1,2,4.
若
(或用求得). ………………………………………………8分
的分布列為:
ξ
2
3
4
p
……………………………………………12分
21、
(Ⅰ)
時,,即
當(dāng)時,
即
在上是減函數(shù)的充要條件為 ………(4分)
(Ⅱ)由(Ⅰ)知,當(dāng)時為減函數(shù),的最大值為;
當(dāng)時,
當(dāng)時,當(dāng)時
即在上是增函數(shù),在上是減函數(shù),時取最大值,最大值為
即 ………………(9分)
(Ⅲ)在(Ⅰ)中取,即
由(Ⅰ)知在上是減函數(shù)
,即
,解得:或
故所求不等式的解集為[ ……………(13分)
22、
解::⑴
,
,即為的表達(dá)式。 (6分)
⑵,,又()
要使成立,只要,即,
即為所求。
⑶
故有
(13分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com