中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點P,則點P的坐標為
(2,2)

查看答案和解析>>

 

一、選擇題

(1)D      (2)C      (3)A      (4)D      (5)A      (6)B

(7)C      (8)A      (9)B      (10)A     (11)B     (12)C

二、填空題:本大題共4小題,每小題4分,共16分.把答案填在題中橫線上.

(13)28    (14)   (15)    (16)2

三、解答題

(17)本小題主要考查同角三角函數(shù)的基本關系式,二倍角公式以及三角函數(shù)式的恒等變形等基礎知識和基本技能.滿分12分.

解:

                     

   當為第二象限角,且

   ,

所以=

(18)本小題主要考查函數(shù)的導數(shù)計算,利用導數(shù)討論函數(shù)的性質,判斷函數(shù)的最大值、最小值以及綜合運算能力.滿分12分.

   解:

令 

化簡為  解得

單調增加;

單調減少.

所以為函數(shù)的極大值.

又因為  

所以   為函數(shù)在[0,2]上的最小值,為函數(shù)

在[0,2]上的最大值.

(19)本小題主要考查離散型隨機變量的分布列、數(shù)學期望等概念,以及運用概率統(tǒng)計知識解決實際問題的能力.滿分12分.

   解:(Ⅰ)的可能值為-300,-100,100,300.

P(=-300)=0.23=0.008, P(=-100)=3×0.22×0.8=0.096,

P(=100)=3×0.2×0.82=0.384, P(=300)=0.83=0.512,

所以的概率分布為

-300

-100

100

300

P

0.008

0.096

0.384

0.512

根據(jù)的概率分布,可得的期望

E=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.

(Ⅱ)這名同學總得分不為負分的概率為P(≥0)=0.384+0.512=0.896.

      1.    解:(Ⅰ)如圖1,取AD的中點E,連結PE,則PE⊥AD.

        作PO⊥平面在ABCD,垂足為O,連結OE.

        根據(jù)三垂線定理的逆定理得OE⊥AD,

        所以∠PEO為側面PAD與底面所成的二面角的平面角,

        由已知條件可知∠PEO=60°,PE=6,

        所以PO=3,四棱錐P―ABCD的體積

        VP―ABCD=

        (Ⅱ)解法一:如圖1,以O為原點建立空間直角坐標系.通過計算可得

        P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

        所以

        因為 所以PA⊥BD.

        解法二:如圖2,連結AO,延長AO交BD于點F.通過計算可得EO=3,AE=2,

        所以  Rt△AEO∽Rt△BAD.

                得∠EAO=∠ABD.

                所以∠EAO+∠ADF=90°

           所以  AF⊥BD.

           因為  直線AF為直線PA在平面ABCD 內的身影,所以PA⊥BD.

        (21)本小題主要考查點到直線距離公式,雙曲線的基本性質以及綜合運算能力.滿分12分.

          解:直線的方程為,即 

        由點到直線的距離公式,且,得到點(1,0)到直線的距離

        同理得到點(-1,0)到直線的距離

           即   

        于是得 

        解不等式,得   由于所以的取值范圍是

        (22)本小題主要考查函數(shù)的導數(shù),三角函數(shù)的性質,等差數(shù)列與等比數(shù)列的概念和性質,以及綜合運用的能力.滿分14分.

        (Ⅰ)證明:

        解出為整數(shù),從而

                

         

               所以數(shù)列是公比的等比數(shù)列,且首項

        (Ⅱ)解:

                 

        從而  

            

        因為,所以

        <p id="5iits"><li id="5iits"></li></p>
        <style id="5iits"></style>