中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

甲.乙.丙三臺機床各自獨立地加工同一種零件.已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為,甲.丙兩臺機床加工的零件都是一等品的概率為.(Ⅰ)分別求甲.乙.丙三臺機床各自加工零件是一等品的概率,(Ⅱ)從甲.乙.丙加工的零件中各取一個檢驗.求至少有一個一等品的概率. 查看更多

 

題目列表(包括答案和解析)

甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為
1
4
,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為
1
12
,甲、丙兩臺機床加工的零件都是一等品的概率為
2
9

(Ⅰ)分別求甲、乙、丙三臺機床各自加工零件是一等品的概率;
(Ⅱ)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率.

查看答案和解析>>

甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為
1
4
,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為
1
12
,甲、丙兩臺機床加工的零件都是一等品的概率為
2
9

(Ⅰ)分別求甲、乙、丙三臺機床各自加工的零件是一等品的概率;
(Ⅱ)若讓每臺機床各自加工2個零件(共計6個零件),求恰好有3個零件是一等品的概率.

查看答案和解析>>

甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為,甲、丙兩臺機床加工的零件是一等品的概率為。

     (1)分別求甲、乙、丙三臺各自加工的零件是一等品的概率;

     (2)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率。

   

查看答案和解析>>

甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為,甲、丙兩臺機床加工的零件都是一等品的概率為.

(1)分別求甲、乙、丙三臺機床各自加工的零件是一等品的概率;

(2)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率.

查看答案和解析>>

甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為,甲、丙兩臺機床加工的零件是一等品的概率為。

     (1)分別求甲、乙、丙三臺各自加工的零件是一等品的概率;

     (2)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率。

查看答案和解析>>

 

一.選擇題

(1)D      (2)A     (3)B       (4)C       (5)B     (6)C

(7)B      (8)C     (9)A       (10)C      (11)B    (12)D

二.填空題

(13)4   (14)0.75   (15)9    (16)

三.解答題

(17)解:由

                             

得    又

于是 

      

(18)解:(Ⅰ)設(shè)A、B、C分別為甲、乙、丙三臺機床各自加工的零件是一等品的事件.

  由①、③得  代入②得  27[P(C)]2-51P(C)+22=0.

解得  (舍去).

將     分別代入 ③、②  可得 

即甲、乙、丙三臺機床各加工的零件是一等品的概率分別是

(Ⅱ)記D為從甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品的事件,

則 

故從甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品的概率為

 

(19)(Ⅰ)證明  因為底面ABCD是菱形,∠ABC=60°,

由PA2+AB2=2a2=PB2   知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD.

(Ⅱ)解  作EG//PA交AD于G,

由PA⊥平面ABCD.

知EG⊥平面ABCD.作GH⊥AC于H,連結(jié)EH,

則EH⊥AC,∠EHG即為二面角的平面角.

又PE : ED=2 : 1,所以

從而    

(Ⅲ)解法一  以A為坐標(biāo)原點,直線AD、AP分別為y軸、z軸,過A點垂直平面PAD的直線為x軸,建立空間直角坐標(biāo)系如圖.由題設(shè)條件,相關(guān)各點的坐標(biāo)分別為

      所以

      設(shè)點F是棱PC上的點,

             令   得

      解得      即 時,

      亦即,F(xiàn)是PC的中點時,、共面.

      又  BF平面AEC,所以當(dāng)F是棱PC的中點時,BF//平面AEC.

      解法二  當(dāng)F是棱PC的中點時,BF//平面AEC,證明如下,

      1. 由   知E是MD的中點.

        連結(jié)BM、BD,設(shè)BDAC=O,則O為BD的中點.

        所以  BM//OE.  ②

        由①、②知,平面BFM//平面AEC.

        又  BF平面BFM,所以BF//平面AEC.

        證法二

        因為 

                 

        所以  、共面.

        又 BF平面ABC,從而BF//平面AEC.

        (20)解:(Ⅰ)

        (i)當(dāng)a=0時,令

        上單調(diào)遞增;

        上單調(diào)遞減.

        (ii)當(dāng)a<0時,令

        上單調(diào)遞減;

        上單調(diào)遞增;

        上單調(diào)遞減.

        (Ⅱ)(i)當(dāng)a=0時,在區(qū)間[0,1]上的最大值是

        (ii)當(dāng)時,在區(qū)間[0,1]上的最大值是.

        (iii)當(dāng)時,在區(qū)間[0,1]上的最大值是

        (21)解:(Ⅰ)依題意,可設(shè)直線AB的方程為 代入拋物線方程得   

             ①

        設(shè)A、B兩點的坐標(biāo)分別是 、、x2是方程①的兩根.

        所以     

        由點P(0,m)分有向線段所成的比為

        又點Q是點P關(guān)于原點的對稱點,

        故點Q的坐標(biāo)是(0,-m),從而.

                       

                       

        所以 

        (Ⅱ)由 得點A、B的坐標(biāo)分別是(6,9)、(-4,4).

          得

        所以拋物線 在點A處切線的斜率為

        設(shè)圓C的方程是

        解之得

        所以圓C的方程是 

        即 

        (22)(Ⅰ)證明:設(shè)點Pn的坐標(biāo)是,由已知條件得

        點Qn、Pn+1的坐標(biāo)分別是:

        由Pn+1在直線l1上,得 

        所以    即 

        (Ⅱ)解:由題設(shè)知 又由(Ⅰ)知 ,

        所以數(shù)列  是首項為公比為的等比數(shù)列.

        從而 

        (Ⅲ)解:由得點P的坐標(biāo)為(1,1).

        所以 

           

        (i)當(dāng)時,>1+9=10.

        而此時 

        (ii)當(dāng)時,<1+9=10.

        而此時 

         

        <ol id="9guag"></ol>