中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

11.設(shè)二項(xiàng)式的展開式的各項(xiàng)系數(shù)的和為p.所有二項(xiàng)式系數(shù)的和為q.且p+q=272.則n的值為 . 查看更多

 

題目列表(包括答案和解析)

設(shè)二項(xiàng)式的展開式的各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則n=( )
A.4
B.5
C.6
D.8

查看答案和解析>>

設(shè)二項(xiàng)式的展開式的各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則n=( )
A.4
B.5
C.6
D.8

查看答案和解析>>

設(shè)二項(xiàng)式的展開式的各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則n=( )
A.4
B.5
C.6
D.8

查看答案和解析>>

設(shè)二項(xiàng)式的展開式的各項(xiàng)系數(shù)的和為,所有二項(xiàng)式系數(shù)的和為,若有,則等于
A.4B.5C.6D.8

查看答案和解析>>

設(shè)二項(xiàng)式數(shù)學(xué)公式的展開式的各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則n=


  1. A.
    4
  2. B.
    5
  3. C.
    6
  4. D.
    8

查看答案和解析>>

 

第Ⅰ卷(選擇題,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

      1. 1.3.5

        第Ⅱ卷(非選擇題,共100分)

        二、填空題

        11.4   12.96  13.-3  14.(文)(理)

        15.(文)   (理)

        三、解答題

        16.解:(1)

           

           

           

           

             …………(4分)

           (1)(文科)在時(shí),

           

           

            在時(shí),為減函數(shù)

            從而的單調(diào)遞減區(qū)間為;…………(文8分)

           (2)(理科)  

            當(dāng)時(shí),由得單調(diào)遞減區(qū)間為

            同理,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為…………(理8分)

           (3)當(dāng),變換過程如下:

            1°將的圖象向右平移個(gè)單位可得函數(shù)的圖象。

            2°將所得函數(shù)圖象上每個(gè)點(diǎn)的縱坐標(biāo)擴(kuò)大為原來的倍,而橫坐標(biāo)保持不變,可得函數(shù)的圖象。

            3°再將所得圖象向上平移一個(gè)單位,可得的圖象……(12分)

           (其它的變換方法正確相應(yīng)給分)

        17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

            底面ABC

            又AC面ABC

            AC

            又

           

            又AC面B1AC

            …………(6分)

           (2)三棱柱ABC―A1B1C1為直三棱柱

            底面ABC

            為直線B1C與平面ABC所成的角,即

            過點(diǎn)A作AM⊥BC于M,過M作MN⊥B1C于N,加結(jié)AN。

            ∴平面BB1CC1⊥平面ABC

            ∴AM⊥平面BB1C1C

            由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

            設(shè)AB=BB1=

            在Rt△B1BC中,BC=BB1

         

          

            即二面角B―B1C―A的正切值為 …………(文12分)

           (3)(理科)過點(diǎn)A1作A1H⊥平面B1AC于H,連結(jié)HC,則

            ∠A1CH為直線A1C與平面B1AC所成的角

            由

           

          在Rt………………(理12分)

        18.解:(文科)(1)從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合即為從口袋A中摸出2個(gè)紅球和1個(gè)黑球,其概率為

          ………………………………(6分)

           (2)由題意知:每個(gè)口袋中摸球?yàn)樽罴呀M合的概率相同,從5個(gè)口袋中摸球可以看成5次獨(dú)立重復(fù)試難,故所求概率為

          ……………………………………(12分)

           (理科)(1)設(shè)用隊(duì)獲第一且丙隊(duì)獲第二為事件A,則

          ………………………………………(6分)

           (2)可能的取值為0,3,6;則

          甲兩場皆輸:

          甲兩場只勝一場:

        <dl id="gvrk2"><strong id="gvrk2"></strong></dl>

          <tfoot id="gvrk2"><progress id="gvrk2"><wbr id="gvrk2"></wbr></progress></tfoot>
        • <pre id="gvrk2"><fieldset id="gvrk2"></fieldset></pre>
        • 0

          3

          6

          P

           

            

          的分布列為

           

           

           

            …………………………(12分)

          19.解:(文科)(1)由

            函數(shù)的定義域?yàn)椋ǎ?,1)

            又

            

            …………………………………(6分)

             (2)任取、

            

            

            

            又

            ……(13分)

             (理科)(1)由

            

          又由函數(shù)

            當(dāng)且僅當(dāng)

            

            綜上…………………………………………………(6分)

             (2)

            

          ②令

          綜上所述實(shí)數(shù)m的取值范圍為……………(13分)

          20.解:(1)的解集有且只有一個(gè)元素

            

            又由

            

            當(dāng)

            當(dāng)

               …………………………………(文6分,理5分)

             (2)         ①

              ②

          由①-②得

          …………………………………………(文13分,理10分)

             (3)(理科)由題設(shè)

                 

                 綜上,得數(shù)列共有3個(gè)變號數(shù),即變號數(shù)為3.……………………(理13分)

          21.解(1)

           ………………………………(文6分,理4分)(2)(2)當(dāng)AB的斜率為0時(shí),顯然滿足題意

          當(dāng)AB的斜率不為0時(shí),設(shè),AB方程為代入橢圓方程

          整理得

           

          綜上可知:恒有.………………………………(文13分,理9分)