中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

若的單調(diào)遞減區(qū)間, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知函數(shù)f(x)=ln(x+1)-x.

(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;

(2)若,證明:

 

查看答案和解析>>

若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是________.

查看答案和解析>>

(本小題滿分13分)已知函數(shù) 

(1)若上是減函數(shù),求的最大值;

(2)若的單調(diào)遞減區(qū)間是,求函數(shù)y=圖像過點的切線與兩坐標軸圍成圖形的面積。

 

 

查看答案和解析>>

已知函數(shù) 

(1)若上是減函數(shù),求的最大值;

(2)若的單調(diào)遞減區(qū)間是,求函數(shù)y=圖像過點的切線與兩坐標軸圍成圖形的面積。

查看答案和解析>>

設(shè)函數(shù)。

(1)如果,求函數(shù)的單調(diào)遞減區(qū)間;

(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(3)證明:當時,

 

查看答案和解析>>

 

第Ⅰ卷(選擇題,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

<blockquote id="9eeyv"><b id="9eeyv"></b></blockquote>
    • 1.3.5

      第Ⅱ卷(非選擇題,共100分)

      二、填空題

      11.4   12.96  13.-3  14.(文)(理)

      15.(文)   (理)

      三、解答題

      16.解:(1)

         

         

         

         

           …………(4分)

         (1)(文科)在時,

         

         

          在時,為減函數(shù)

          從而的單調(diào)遞減區(qū)間為;…………(文8分)

         (2)(理科)  

          當時,由得單調(diào)遞減區(qū)間為

          同理,當時,函數(shù)的單調(diào)遞減區(qū)間為…………(理8分)

         (3)當,變換過程如下:

          1°將的圖象向右平移個單位可得函數(shù)的圖象。

          2°將所得函數(shù)圖象上每個點的縱坐標擴大為原來的倍,而橫坐標保持不變,可得函數(shù)的圖象。

          3°再將所得圖象向上平移一個單位,可得的圖象……(12分)

         (其它的變換方法正確相應給分)

      17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

          底面ABC

          又AC面ABC

          AC

          又

         

          又AC面B1AC

          …………(6分)

         (2)三棱柱ABC―A1B1C1為直三棱柱

          底面ABC

          為直線B1C與平面ABC所成的角,即

          過點A作AM⊥BC于M,過M作MN⊥B1C于N,加結(jié)AN。

          ∴平面BB1CC1⊥平面ABC

          ∴AM⊥平面BB1C1C

          由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

          設(shè)AB=BB1=

          在Rt△B1BC中,BC=BB1

       

        

          即二面角B―B1C―A的正切值為 …………(文12分)

         (3)(理科)過點A1作A1H⊥平面B1AC于H,連結(jié)HC,則

          ∠A1CH為直線A1C與平面B1AC所成的角

          由

         

        在Rt………………(理12分)

      18.解:(文科)(1)從口袋A中摸出的3個球為最佳摸球組合即為從口袋A中摸出2個紅球和1個黑球,其概率為

        ………………………………(6分)

         (2)由題意知:每個口袋中摸球為最佳組合的概率相同,從5個口袋中摸球可以看成5次獨立重復試難,故所求概率為

        ……………………………………(12分)

         (理科)(1)設(shè)用隊獲第一且丙隊獲第二為事件A,則

        ………………………………………(6分)

         (2)可能的取值為0,3,6;則

        甲兩場皆輸:

        甲兩場只勝一場:

          0

          3

          6

          P

           

            

          的分布列為

           

           

           

            …………………………(12分)

          19.解:(文科)(1)由

            函數(shù)的定義域為(-1,1)

            又

            

            …………………………………(6分)

             (2)任取

            

            

            

            又

            ……(13分)

             (理科)(1)由

            

          又由函數(shù)

            當且僅當

            

            綜上…………………………………………………(6分)

             (2)

            

          ②令

          綜上所述實數(shù)m的取值范圍為……………(13分)

          20.解:(1)的解集有且只有一個元素

            

            又由

            

            當

            當

               …………………………………(文6分,理5分)

             (2)         ①

              ②

          由①-②得

          …………………………………………(文13分,理10分)

             (3)(理科)由題設(shè)

                 

                 綜上,得數(shù)列共有3個變號數(shù),即變號數(shù)為3.……………………(理13分)

          21.解(1)

           ………………………………(文6分,理4分)(2)(2)當AB的斜率為0時,顯然滿足題意

          當AB的斜率不為0時,設(shè),AB方程為代入橢圓方程

          整理得

           

          綜上可知:恒有.………………………………(文13分,理9分)

           

        • <blockquote id="9eeyv"></blockquote>