中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

C. 查看更多

 

題目列表(包括答案和解析)


C.選修4—4:坐標系與參數(shù)方程
(本小題滿分10分)
在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)),判斷直線和圓的位置關系.

查看答案和解析>>

C選修4-4:坐標系與參數(shù)方程(本小題滿分10分)
在平面直角坐標系中,求過橢圓為參數(shù))的右焦點且與直線為參數(shù))平行的直線的普通方程。

查看答案和解析>>

C.(選修4—4:坐標系與參數(shù)方程)

在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正

半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)),求直線

得的弦的長度.

 

查看答案和解析>>

C(坐標系與參數(shù)方程選做題)已知極坐標的極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為為參數(shù)),直線l的極坐標方程為.點P在曲線C上,則點P到直線l的距離的最小值為                

 

查看答案和解析>>

C.選修4-4:坐標系與參數(shù)方程

在直角坐標系中,已知曲線的參數(shù)方程是是參數(shù)),若以為極點,軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線的極坐標方程.

 

 

 

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

答案

D

A

B

C

B

B

B

D

二、填空題

9.1;      10. ;   11.12;    12.;    13.;   14.

三、解答題

15.解:(Ⅰ)由,根據(jù)正弦定理得

所以,…………………………………………………………………………………………4分

為銳角三角形得.                 …………………………………………7分

(Ⅱ)根據(jù)余弦定理,得.           ………10分

所以,.                ……………………………………………………………12分

 

16.解:(1)由題意可知

時, .                   ……3分

時,,亦滿足上式.                            ……5分

∴數(shù)列的通項公式為).                            ……6分

(2)由(1)可知,                                                ……7分

∴數(shù)列是以首項為,公比為的等比數(shù)列,                           ……9分

.                                   ……12分

 

17.

 

……5分

 

 

 

 

 

 

 

 

<button id="moprc"><nobr id="moprc"></nobr></button>
    <nav id="moprc"><strong id="moprc"></strong></nav>
    <tt id="moprc"></tt>
  1. ……12分

     

    ……14分

     

     

     

     

     

     

     

     

     

      <table id="moprc"><strong id="moprc"></strong></table>
    • ……12分

       

      ……14分

       

       

      18.解:(1)由   …………………2分

      , ……4分

      ,

       

      函數(shù)的單調(diào)區(qū)間如下表:

      (-¥,-

      (-,1)

      1

      (1,+¥)

      0

      0

      ­

      極大值

      ¯

      極小值

      ­

      所以函數(shù)的遞增區(qū)間是(-¥,-)與(1,+¥),遞減區(qū)間是(-,1)。      …9分

      (2),

      時,為極大值,而,則為最大值。

      要使恒成立,只需;

      解得。                                        ……………………14分

      19.解:(1)設所求直線的斜率為,其方程為,代入橢圓方程并化簡得:

                      …………………………2分

              設直線l與橢圓交于P1x1,y1)、P2x2,y2),則,

      因為(4,2)是直線l被橢圓所截得的線段的中點,則,

      ,解得。         …………………………………………6分

      由點斜式可得l的方程為x+2y-8=0.               ………………………………………8分

      (2)由(1)知,,     ………………………10分

             ……………14分

       

       

       

       

      20. 解:設AN的長為x米(x >2)

                   ∵,∴|AM|=

      ∴SAMPN=|AN|•|AM|=         …………………………………………………………4分

      (1)由SAMPN > 32 得  > 32 ,

               ∵x >2,∴,即(3x-8)(x-8)> 0

               ∴         即AN長的取值范圍是……………………………8分

      (2)令y=,則y′= ……………………………………… 10分

      ∵當,y′< 0,∴函數(shù)y=上為單調(diào)遞減函數(shù),

      ∴當x=3時y=取得最大值,即(平方米)

      此時|AN|=3米,|AM|=米      ……………………………………………………… 14分

       

       

       

      <table id="moprc"></table>