中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

第Ⅱ卷 查看更多

 

題目列表(包括答案和解析)

 

第Ⅱ卷(非選擇題,共90分)

二、填空題:(本大題4小題,每小題5分,滿分20分)

13.用一個(gè)平面去截正方體,其截面是一個(gè)多邊形,則這個(gè)多邊形的邊數(shù)最多是     條 。

 

查看答案和解析>>


第Ⅱ卷(非選擇題,共90分)
二、填空題:(本大題4小題,每小題5分,滿分20分)
13.用一個(gè)平面去截正方體,其截面是一個(gè)多邊形,則這個(gè)多邊形的邊數(shù)最多是    條 。

查看答案和解析>>


第Ⅱ卷(非選擇題,共90分)
二、填空題:(本大題4小題,每小題5分,滿分20分)
13.用一個(gè)平面去截正方體,其截面是一個(gè)多邊形,則這個(gè)多邊形的邊數(shù)最多是    條 。

查看答案和解析>>

 設(shè)函數(shù),,則的值域是(    )

A.     B.     C.     D.

第II卷(非選擇題,共90分)

 

查看答案和解析>>

已知是拋物線上四點(diǎn),是焦點(diǎn),且,則(  )
          
第Ⅱ卷(非選擇題  共90分)

查看答案和解析>>

1.B       2.B       3.A      4.C       5.C       6.B       7.D      8.B       9.C       10.B 學(xué)科網(wǎng)(Zxxk.Com)

11.A     12.D學(xué)科網(wǎng)(Zxxk.Com)

【解析】學(xué)科網(wǎng)(Zxxk.Com)

1.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

2.的系數(shù)是,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

3.,所以選學(xué)科網(wǎng)(Zxxk.Com)

4.為鈍角或,所以選C學(xué)科網(wǎng)(Zxxk.Com)

5.,所以選C.學(xué)科網(wǎng)(Zxxk.Com)

6.,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

7.,所以選D.學(xué)科網(wǎng)(Zxxk.Com)

8.化為,所以選B.學(xué)科網(wǎng)(Zxxk.Com)

9.將左移個(gè)單位得,所以選A.學(xué)科網(wǎng)(Zxxk.Com)

10.直線與橢圓有公共點(diǎn),所以選B.

11.如圖,設(shè),則,

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.畫可行域 可知符合條件的點(diǎn)是:共6個(gè)點(diǎn),故,所以選D.

二、

13.185.

14.60.

15.,由,得

      

16..如圖:

      

如圖,可設(shè),又,

       當(dāng)面積最大時(shí),.點(diǎn)到直線的距離為

三、

17.(1)由三角函數(shù)的定義知:

       (2)

             

             

             

18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則

       (2)設(shè)兩年后出口額超過危機(jī)前出口額的事件為,則

19.(1)設(shè)交于點(diǎn)

             

             

             

              從而,即,又,且

              平面為正三角形,的中點(diǎn),

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設(shè)的中點(diǎn),連接,則,

              平面,過點(diǎn),連接,則

              為二面角的平面角.

              在中,

              又

20.(1)            

             

       (2)

             

              又

             

             

              綜上:

21.(1)的解集為(1,3)

           ∴1和3是的兩根且

<abbr id="zy462"><form id="zy462"><optgroup id="zy462"></optgroup></form></abbr>

           

                        時(shí),時(shí),

                        處取得極小值

                                                   ③

                  由式①、②、③聯(lián)立得:

                 

                 (2)

                     ∴當(dāng)時(shí),上單調(diào)遞減,

                  當(dāng)時(shí),

                        當(dāng)時(shí),在[2,3]上單調(diào)遞增,

          22.(1)由

                     ∴橢圓的方程為:

          (2)由,

                

                 又

          設(shè)直線的方程為:

                        由此得.                                   ①

                        設(shè)與橢圓的交點(diǎn)為,則

                        由

                        ,整理得

                        ,整理得

                        時(shí),上式不成立,          ②

                  由式①、②得

                 

                  ∴取值范圍是