題目列表(包括答案和解析)
C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線
,
(1)求圓O和直線的直角坐標方程;(2)當
時,求直線
與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù)和
,不等式
恒成立,試求實數(shù)
的取值范圍.
C
[解析] 由基本不等式,得ab≤=
=
-ab,所以ab≤
,故B錯;
+
=
=
≥4,故A錯;由基本不等式得
≤
=
,即
+
≤
,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D錯.故選C.
.定義域為R的函數(shù)滿足
,且當
時,
,則當
時,
的最小值為( )
(A) (B)
(C)
(D)
.過點作圓
的弦,其中弦長為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題(每小題5分,共50分)
題號
1
2
3
4
5
6
7
8
9
10
答案
D
D
C
B
C
A
B
B
A
C
二、填空題(每小題4分,共24分)
11.; 12.
; 13.
; 14.
; 15.
; 16.(4);
19.解:∵,
,∴
………………2分
∴,
,………………8分
∴sinb=sin[(a+b)-a]=sin(a+b)cosa-cos(a+b)sina=………………12分
20.(1)f(x)
…………4分
,
由得,對稱軸方程為:
………………6分
(2)由得,f(x)的單調(diào)遞減區(qū)間為:
,k∈Z
………………9分
(3)由,得
,則
,
所以函數(shù)f(x)在區(qū)間上的值域為
………………13分
21.解:(1)依題意,得,∴
,∴
,…………2分
∵最大值為2,最小值為-2,∴A=2∴,………………4分
∵圖象經(jīng)過(0,1),∴2sinj=1,即又
∴
,………………6分
∴………………7分
(2)∵,∴-2≤ f(x) ≤ 2
∴或
解得,
或
………………12分
22.解:(1)
=2cos2x+cosx-1………………5分
(2)要使圖象至少有一公共點,須使f(x)=g(x)在上至少有一解,
令t=cos x,∵x∈(0,p) ∴x與t一一對應,且t∈(-1,1),
即方程2t2+t-1 = t2+(a+1)t + (a-3)在(-1,1)上至少有一解,………………7分
整理得:t2-at+(2-a)=0
1°一解:f(1)?f(-1)=(3………………9分
2°兩解(含重根的情形):
,解得:
,∴
……11分
綜上所述:………………12分
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com