中文字幕在线中文乱码怎么解决,亚洲av片毛片成人观看,亚洲av无码专区国产不卡顿,亚洲精品国产综合久久久久紧 ,综合久久国产九一剧情麻豆

(C)或 (D)或 查看更多

 

題目列表(包括答案和解析)

(易向量的概念)下列命題中,正確的是( 。
A、若a∥b,則a與b的方向相同或相反B、若a∥b,b∥c,則a∥cC、若兩個單位向量互相平行,則這兩個單位向量相等D、若a=b,b=c,則a=c

查看答案和解析>>

1、c≠0是方程 ax2+y2=c表示橢圓或雙曲線的(  )

查看答案和解析>>

5、(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設(shè)p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是( 。

查看答案和解析>>

(x-1)(x+3)>0的解集為( 。

查看答案和解析>>

(2003•北京)設(shè)集合A={x|x2-1>0},B={x|log2x>0|},則A∩B等于(  )

查看答案和解析>>

    <tt id="m0efg"><nobr id="m0efg"></nobr></tt>
    • <tt id="m0efg"></tt>
        <blockquote id="m0efg"><b id="m0efg"></b></blockquote>

          2009.4

           

          1-10.CDABB   CDBDA

          11.       12. 4        13.        14.       15.  

          16.   17.

          18.解:(Ⅰ)由題意,有

          .…………………………5分

          ,得

          ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

          (Ⅱ)由,得

          .           ……………………………………………… 10分

          ,∴.      ……………………………………………… 14分

          19.解:(Ⅰ)設(shè)數(shù)列的公比為,由,.             …………………………………………………………… 4分

          ∴數(shù)列的通項公式為.      ………………………………… 6分

          (Ⅱ) ∵,    ,      ①

          .      ②         

          ①-②得: …………………12分

                       得,                           …………………14分

          20.解:(I)取中點,連接.

          分別是梯形的中位線

          ,又

          ∴面,又

          .……………………… 7分

          (II)由三視圖知,是等腰直角三角形,

               連接

               在面AC1上的射影就是,∴

               ,

          ∴當的中點時,與平面所成的角

            是.           ………………………………14分

                                                         

          21.解:(Ⅰ)由題意:.

          為點M的軌跡方程.     ………………………………………… 4分

          (Ⅱ)由題易知直線l1l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

              ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

                 同理RQ的方程為,求得.  ………………………… 9分

          .  ……………………………… 13分

          當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

          22. 解:(Ⅰ),由題意得

          所以                    ………………………………………………… 4分

          (Ⅱ)證明:令,,

          得:,……………………………………………… 7分

          (1)當時,,在,即上單調(diào)遞增,此時.

                    …………………………………………………………… 10分

          (2)當時,,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時只要或者即可,得,

          .                        …………………………………………14分

          由 (1) 、(2)得 .

          ∴綜上所述,對于,使得成立. ………………15分